Advertisement

Metallurgical considerations for the fabrication of low-enriched uranium dispersion targets with a high density for 99Mo production

  • Ho Jin Ryu
  • Yong Jin Jeong
  • Ji Min Nam
  • Jong Man Park
Article

Abstract

It is necessary to develop high-uranium-density targets with low enriched uranium in order to improve 99Mo production efficiency. In order to investigate the use of high density low enriched uranium (LEU) dispersion targets using atomized U–Al alloy powder, U–10 wt% Al and U–20 wt% Al powders were fabricated by centrifugal atomization. Metallurgical reactions between uranium and aluminum during the hot working were investigated in order to minimize changes in the established chemical processes for 99Mo extraction. It is concluded that LEU based dispersion target plates with increased uranium density can be fabricated by controlling the chemical reactions between U and Al in atomized U–Al alloy powders.

Keywords

99Mo Dispersion target Low-enriched uranium Uranium density Atomization Chemical interaction 

Notes

Acknowledgments

This study was supported by the National Nuclear R&D Programs of the Ministry of Science, Information and Future Planning (MSIP) of Korea (NRF-2014M2C1A1029177 and NRF-2012M2A2A6009860) and by Korea Advanced Institute of Science and Technology (KAIST).

References

  1. 1.
    National Research Council of the National Academy of Science (2009) Medical isotope production without highly enriched uranium. National Academies Press, Washington, DCGoogle Scholar
  2. 2.
    van der Marck SC, Koning AJ, Charlton KE (2010) The options for the future production of the medical isotope 99Mo. Eur J Nucl Med Mol Imaging 37:1817–1820CrossRefGoogle Scholar
  3. 3.
    Mushtaq A (2010) Reactors are indispensable for radioisotope production. Ann Nucl Med 24:759–760CrossRefGoogle Scholar
  4. 4.
    Pillai MRA, Dash A, Knapp FR (2013) Sustained availability of 99mTc: possible paths forward. J Nucl Med 54:313–323CrossRefGoogle Scholar
  5. 5.
    Hansell C (2008) Nuclear medicine’s double hazard: imperiled treatment and the risk of terrorism. Nonprolif Rev 15:185–208CrossRefGoogle Scholar
  6. 6.
    Ryu HJ, Kim CK, Sim MS, Park JM, Lee JH (2013) Development of high density U/Al dispersion plates for 99Mo production using atomized uranium powder. Nucl Eng Technol 45:979–986CrossRefGoogle Scholar
  7. 7.
    Massalski T (1986) Binary alloy phase diagrams. American Society for Metals, Metals ParkGoogle Scholar
  8. 8.
    Kassner ME, Adler PH, Adamson MG, Peterson DE (1989) Evaluation and thermodynamic analysis of phase equilibria in the U-Al system. J Nucl Mater 167:160–168CrossRefGoogle Scholar
  9. 9.
    Villars P, Calvert LD (1985) Pearson’s handbook of crystallographic data for intermetallic phases. American Society for Metals, Metal ParkGoogle Scholar
  10. 10.
    Matos JE, Snelgrove JL, Research reactor core conversion guidebook bolume 4: fuels (Appendices I-K) IAEA-TECDOC-643, International Atomic Energy Agency, ViennaGoogle Scholar
  11. 11.
    Sameh AA, Ache HJ (1989) Fission molybdenum for medical use, IAEA-TECDOC-515. International Atomic Energy Agency, ViennaGoogle Scholar
  12. 12.
    Dash A, Knapp FF Jr, Pillai MRA (2013) 99Mo/99mTc separation: an assessment of technology options. Nucl Med Biol 40:167–176CrossRefGoogle Scholar
  13. 13.
    Ali SA, Ache HJ (1987) Production techniques of fission 99Mo. Radiochim Acta 41:65–72Google Scholar
  14. 14.
    Cristiti PR, Coles HJ, Bavaro R, Bronck M, Centurion R, Cestau D (2002) Production of 99Mo from low enriched uranium targets. Proceedings on international meeting on reduced enrichment for research and test reactors, BariloceGoogle Scholar
  15. 15.
    Ali KL, Khan AA, Mushtaq A, Imtiaz F, Ziai MA, Gulzar A, Farooq M, Hussain N, Ahmed N, Pervez S, Zaidi JH (2013) Development of low enriched uranium target plates by thermo-mechanical processing of UAl2–Al matrix for production of 99Mo in Pakistan. Nucl Eng Des 255:77–85CrossRefGoogle Scholar
  16. 16.
    Sameh AA (1993) Production of fission molybdenum for nuclear medicine from irradiated uranium of low enrichment. KFK Nachr 25:83–89Google Scholar
  17. 17.
    Kim CK, Park JM, Ryu HJ (2007) Use of a centrifugal atomization process in the development of research reactor fuel. Nucl Eng Technol 39:617–626CrossRefGoogle Scholar
  18. 18.
    DeLuca LS, Sumsion HT (1957) Rate of growth of diffusion layers in U-Al and U-AlSi couples. KAPL-1747. Knolls Atomic Power Laboratory, Schenectady. doi: 10.2172/4343678 CrossRefGoogle Scholar
  19. 19.
    Ryu HJ, Kim YS, Park JM, Chae HT, Kim CK (2008) Performance evaluation of U–Mo/Al dispersion fuel by considering a fuel-matrix interaction. Nucl Eng Technol 40:409–418CrossRefGoogle Scholar
  20. 20.
    Ryu HJ, Park JS, Park JM, Kim CK (2011) The effect of Si-rich layer coating on U–Mo versus Al interdiffusion. Nucl Eng Technol 43:159–166CrossRefGoogle Scholar
  21. 21.
    Ryu HJ, Han YS, Park JM, Park SD, Kim CK (2003) Reaction layer growth and reactor heat of U–Mo/Al dispersion fuels using centrifugally atomized powders. J Nucl Mater 321:210–220CrossRefGoogle Scholar
  22. 22.
    Nazare S, Ondracek G, Thummler F (1975) Investigation on UAlx–Al dispersion fuels for high-flux reactors. J Nucl Mater 56:251–259CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Ho Jin Ryu
    • 1
  • Yong Jin Jeong
    • 2
  • Ji Min Nam
    • 2
  • Jong Man Park
    • 2
  1. 1.Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Korea Atomic Energy Research InstituteDaejeonRepublic of Korea

Personalised recommendations