Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2457–2466 | Cite as

In situ synthesis of volatile carbonyl complexes with short-lived nuclides

  • Julia Even
  • Dieter Ackermann
  • Masato Asai
  • Michael Block
  • Holger Brand
  • Antonio Di Nitto
  • Christoph E. Düllmann
  • Robert Eichler
  • Fangli Fan
  • Hiromitsu Haba
  • Willi Hartmann
  • Annett Hübner
  • Fritz P. Heßberger
  • Minqhiu Huang
  • Egon Jäger
  • Daiya Kaji
  • Jumpei Kanaya
  • Yusuke Kaneya
  • Jadambaa Khuyagbaatar
  • Birgit Kindler
  • Jens V. Kratz
  • Jörg Krier
  • Yuki Kudou
  • Nikolaus Kurz
  • Mustapha Laatiaoui
  • Bettina Lommel
  • Joachim Maurer
  • Sunao Miyashita
  • Kouji Morimoto
  • Kosuke Morita
  • Masashi Murakami
  • Yuichiro Nagame
  • Heino Nitsche
  • Kazuhiro Ooe
  • Zhi Qin
  • Tetsuya K. Sato
  • Matthias Schädel
  • Jutta Steiner
  • Takayuki Sumita
  • Mirei Takeyama
  • Kengo Tanaka
  • Atsushi Toyoshima
  • Kazuaki Tsukada
  • Andreas Türler
  • Ilya Usoltsev
  • Yasuo Wakabayashi
  • Yang Wang
  • Norbert Wiehl
  • Alexander Yakushev
  • Sayaka Yamaki
Article
  • 263 Downloads

Abstract

Rapid in situ formation of metal carbonyl complexes with short-lived nuclides has been demonstrated to be feasible with recoiling ions formed in nuclear fusion and fission reactions. These carbonyl complexes are highly volatile and can be transported rapidly in a gas-stream to counting or chemistry devices. This method was already successfully applied in the chemical investigation of the superheavy element seaborgium (Z = 106) and appears promising for various fields of nuclear research. In this article, we give an overview on the current status of metal carbonyl complex studies with short-lived d-element isotopes.

Keywords

Metal carbonyl complexes Superheavy elements Nuclear fission products Nuclear fusion products Physical preseparation Seaborgium 

Notes

Acknowledgments

Parts of this work were performed at the RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo.We thank the ion source and accelerator staff at the RIKEN Nishina Center for accelerator based research and the operators of the ion source and UNILAC at GSI, Helmholtzzentrum für Schwerionenfroschung GmbH, Darmstadt, Germany, for providing intense and stable ion beams. The present work is partially supported by the Reimei Research Program (Japan Atomic Energy Agency), the German Federal Ministry for Education and Research contract No. 06MZ7164, the Helmholtz association contract-No.VH-NG-723, the Ministry of Education, Culture, Sports, Science, and Technology, Japan, Grant-in-Aids No. 19002005 and No. 23750072, the Swiss National Science Foundation contract No. 200020 144511, the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, Heavy Element Chemistry Program of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231, and the National Natural Science Foundation of China (Grant No. 11079006)

References

  1. 1.
    Schlyer DJ (2005) Production of radionuclides in accelerators. In: Handbook of Radiopharmaceuticals, Wiley, New York, pp 1–70Google Scholar
  2. 2.
    Ruth TJ (2005) Accelerators Available for Isotope Production. In: Handbook of Radiopharmaceuticals, Wiley, New York, pp 71–85Google Scholar
  3. 3.
    Mausner LF, Mirzadeh S (2005) Reactor Production of Radionuclides. In: Handbook of Radiopharmaceuticals, Wiley, New York, pp 87–117Google Scholar
  4. 4.
    Köster U, Carbonez P, Dorsival A, Dvorak J, Eichler R, Fernandes S, Frånberg H, Neuhausen J, Novackova Z, Wilfinger R, Yakushev A (2007) (Im-)possible isol beams. Eur Phys J Spec Top 150(1):285–291CrossRefGoogle Scholar
  5. 5.
    Türler A, Pershina V (2013) Advances in the production and chemistry of the heaviest elements. Chem Rev 113(2):1237–1312CrossRefGoogle Scholar
  6. 6.
    Mond L, Langer C, Quincke F (1890) Action of carbon monoxide on nickel. J Chem Soc Trans 57:749–753CrossRefGoogle Scholar
  7. 7.
    Werner H (1990) Complexes of carbon monoxide and its relatives: An organometallic family celebrates its birthday. Angew Chem Int Ed Engl 29(10):1077–1089CrossRefGoogle Scholar
  8. 8.
    Elschenbroich C (2003) Organometallchemie, Teubner-Studienbücher Chemie, 4th edn. Teubner, StuttgartGoogle Scholar
  9. 9.
    Frenking G, Fröhlich N (2000) The nature of the bonding in transition-metal compounds. Chem Rev 100(2):717–774CrossRefGoogle Scholar
  10. 10.
    Pyykko P, Desclaux JP (1979) Relativity and the periodic system of elements. Acc Chem Res 12(8):276–281CrossRefGoogle Scholar
  11. 11.
    Nash CS, Bursten BE (1999) Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J Am Chem Soc 121(46):10,830–10831CrossRefGoogle Scholar
  12. 12.
    Nash CS, Bursten BE (1995) Comparisons among transition-metal, actinide, and transactinide complexes - The relativistic electronic structures of Cr(CO)6, Mo(CO)6, W(CO)6, U(CO)6, and Sg(CO)6. New J Chem 19(5–6):669–675Google Scholar
  13. 13.
    Pershina V, Anton J (2013) Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106. Sg J Chem Phys 138(17):174301–174306CrossRefGoogle Scholar
  14. 14.
    Baumgärtner F, Reichold P (1961) Zur Chemie bei Kernprozessen: IV. Anwendung der Uranspaltung zu Synthese von trägerfreiem Molybdän-hexacarbonyl (99Mo)*. Z für Naturforschung 169:945–948Google Scholar
  15. 15.
    Wachsmuth M, Eichler B, Tobler L, Jost DT, Gäggeler HW, Ammann M (2000) On-line gas-phase separation of short-lived bromine nuclides from precursor selenium. Radiochim Acta 88:873–877CrossRefGoogle Scholar
  16. 16.
    Wachsmuth M, Eichler B, Tobler L, Hänssler F, Gäggeler H, Ammann M (2002) Chemical characterization of short-lived selenium and their daughter isotopes from thermal neutron induced fission of 235U at a gas-jet facility. J Radioanal Nucl Chem 254(1):201–208CrossRefGoogle Scholar
  17. 17.
    Even J, Yakushev A, Düllmann ChE, Dvorak J, Eichler R, Gothe O, Hild D, Jäger E, Khuyagbaatar J, Kratz JV, Krier J, Niewisch L, Nitsche H, Pysmenetska I, Schädel M, Schausten B, Türler A, Wiehl N, Wittwer D (2012) Rapid synthesis of radioactive transitionmetal carbonyl complexes at ambient conditions. Inorg Chem 51(12):6431–6433CrossRefGoogle Scholar
  18. 18.
    Even J, Yakushev A, Düllmann ChE, Dvorak J, Eichler R, Gothe O, Hild D, Jäger E, Khuyagbaatar J, Kratz JV, Krier J, Niewisch L, Nitsche H, Pysmenetska I, Schädel M, Schausten B, Türler A, Wiehl N, Wittwe D (2014) In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes. Radiochim Acta. doi: 10.1515/ract-2013-2198 Google Scholar
  19. 19.
    Wang Y, Qin Z, Fan FL, Fan FY, Cao SW, Wu XL, Zhang X, Bai J, Yin XJ, Tian LL, Zhao L, Tian W, Li Z, Tan CM, Guo JS, Gäggeler H (2014) Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes. Radiochim Acta 102:69–76Google Scholar
  20. 20.
    Düllmann ChE, Eichler B, Eichler R, Gäggeler HW, Jost DT, Kindler U, Piguet D, Soverna S, Thörle P, Trautmann N, Türler A (2003) Miss piggy, a californium-252 fission fragment source as a generator of short-lived radionuclides. Nucl Instr Meth Phys Res A 512:595–605CrossRefGoogle Scholar
  21. 21.
    Huang M, Kanaya J, Murakami M, Haba H, Shibata S (2014) Production of 179mW in the form of carbonyl complex. In RIKEN Accelerator Progress Report 47 (in press)Google Scholar
  22. 22.
    Kirbach UW, Folden CM III, Ginter TN, Gregorich KE, Lee DM, Ninov V, Omtvedt JP, Patin JB, Seward NK, Strellis DA (2002) The cryo-thermochromatographic separator (CTS): A new rapid separation and a-detection system for on-line chemical studies of highly volatile osmium and hassium (Z = 108) tetroxides. Nucl Instr Meth Phys Res A 484(1–3):587–594CrossRefGoogle Scholar
  23. 23.
    Düllmann ChE, Folden CM III, Gregorich KE, Hoffman DC, Leitner D, Pang GK, Sudowe R, Zielinski PM, Nitsche H (2005) Heavy-ion-induced production and physical preseparation of short-lived isotopes for chemistry experiments. Nucl Instr Meth Phys Res A 551(2–3):528–539CrossRefGoogle Scholar
  24. 24.
    Düllmann ChE (2011) Superheavy element studies with preseparated isotopes. Radiochim Acta 99(7–8):515–526CrossRefGoogle Scholar
  25. 25.
    Düllmann ChE (2008) Physical separators for the heaviest elements. Nucl Instr Meth Phys Res B 266:4123–4130CrossRefGoogle Scholar
  26. 26.
    Even J, Ballof J, Brüchle W, Buda RA, Düllmann ChE, Eberhardt K, Gorshkov A, Gromm E, Hild D, Jäger E, Khuyagbaatar J, Kratz JV, Krier J, Liebe D, Mendel M, Nayak D, Opel K, Omtvedt JP, Reichert P, Runke J, Sabelnikov A, Samadani F, Schädel M, Schausten B, Scheid N, Schimpf E, Semchenkov A, Thörle-Pospiech P, Toyoshima A, Türler A, Vicente Vilas V, Wiehl N, Wunderlich T, Yakushev A (2011) The recoil transfer chamber–an interface to connect the physical preseparator TASCA with chemistry and counting setups. Nucl Instr Meth Phys Res A 638(1):157–164CrossRefGoogle Scholar
  27. 27.
    Düllmann ChE, Gregorich KE, Pang GK, Dragojevic I, Eichler R, Folden CM III, Garcia MA, Gates JM, Hoffman DC, Nelson SL, Sudowe R, Nitsche H (2009) Gas chemical investigation of hafnium and zirconium complexes with hexafluoroacetylacetone using preseparated short-lived radioisotopes. Radiochim Acta 97(8):403–418CrossRefGoogle Scholar
  28. 28.
    Schädel M (2007) Superheavy element chemistry at GSI – status and perspectives. Eur Phys J D 45:67–74CrossRefGoogle Scholar
  29. 29.
    Morita K, Yoshida A, Inamura TT, Koizumi M, Nomura T, Fujioka M, Shinozuka T, Miyatake H, Sueki K, Kudo H, Nagai Y, Toriyama T, Yoshimura K, Hatsukawa Y (1992) RIKEN isotope separator on-line GARIS/IGISOL. Nucl Instr Meth Phys Res B 70:220–225CrossRefGoogle Scholar
  30. 30.
    Haba H, Kikunaga H, Kaji D, Akiyama T, Morimoto K, Morita K, Nanri T, Ooe K, Sato N, Shinohara A, Suzuki D, Takabe T, Yamazaki I, Yokoyama A, Yoneda A (2008) Performance of the gas-jet transport system coupled to the riken gas-filled recoil ion separator GARIS for the 238U(22Ne, 5n)255No reaction. J Nucl Radiochem Sci 9(1):27–31CrossRefGoogle Scholar
  31. 31.
    Even J, Yakushev A, Düllmann ChE, Haba H, Asai M, Sato TK, Brand H, Di Nitto A, Eichler R, Fangli F, Hartmann W, Huang M, Jäger E, Kaji D, Kanaya J, Kaneya Y, Khuyagbaatar J, Kindler B, Kratz JV, Krier J, Kudou Y, Kurz N, Lommel B, Miyashita S, Morimoto K, Morita K, Nagame Y, Nitsche H, Qin Z, Schädel M, Steiner J, Sumita T, Tanaka K, Toyoshima A, Tsukada K, Türler A, Usoltsev I, Wakabayashi Y, Wang Y, Wiehl N, Yamaki S (2014) Synthesis and detection of a seaborgium carbonyl complex. Science 345(6203):1491–1493Google Scholar
  32. 32.
    Münzenberg G, Faust W, Hofmann S, Armbruster P, Güttner K, Ewald H (1979) The velocity filter SHIP, a separator of unslowed heavy ion fusion products. Nucl Instr Meth 161(1):65–82CrossRefGoogle Scholar
  33. 33.
    Even J, Ackermann D, Block M, Brand H, Düllmann ChE, Jäger E, Khuyagbaatar J, Kindler B, Kratz JV, Krier J, Lommel B, Heßberger F, Maurer J, Steiner J, Traut T, Wiehl N (2013) Chemistry for isobar separation behind SHIP. In: GSI Scientific Report 2012/GSI Report 2013-1 p 139Google Scholar
  34. 34.
    Khuyagbaatar J, Ackermann D, Andersson LL, Ballof J, Brüchle W, Düllmann ChE, Dvorak J, Eberhardt K, Even J, Gorshkov A, Graeger R, Heßberger FP, Hild D, Hoischen R, Jäger E, Kindler B, Kratz JV, Lahiri S, Lommel B, Maiti M, Merchan E, Rudolph D, Schädel M, Schaffner H, Schausten B, Schimpf E, Semchenkov A, Serov A, Türler A, Yakushev A (2012) Study of the average charge states of 188Pb and 252,254No ions at the gas-filled separator TASCA. Nucl Instr Meth Phys Res 689:40–46CrossRefGoogle Scholar
  35. 35.
    Yakushev A, Gates JM, Türler A, Schädel M, Düllmann ChE, Ackermann D, Andersson LL, Block M, Brüchle W, Dvorak J, Eberhardt K, Essel HG, Even J, Forsberg U, Gorshkov A, Graeger R, Gregorich KE, Hartmann W, Herzberg RD, Hessberger FP, Hild D, Hübner A, Jäger E, Khuyagbaatar J, Kindler B, Kratz JV, Krier J, Kurz N, Lommel B, Niewisch LJ, Nitsche H, Omtvedt JP, Parr E, Qin Z, Rudolph D, Runke J, Schausten B, Schimpf E, Semchenkov A, Steiner J, Thörle-Pospiech P, Uusitalo J, Wegrzecki M, Wiehl N (2014) Superheavy element flerovium (element 114) is a volatile metal. Inorg Chem 53(3):1624–1629CrossRefGoogle Scholar
  36. 36.
    Düllmann ChE, Türler A (2008) 248Cm(22Ne, xn)270-xSg reaction and the decay properties of 265Sg reexamined. Phys Rev C 77(6):064320CrossRefGoogle Scholar
  37. 37.
    Haba H, Kaji D, Kudou Y, Morimoto K, Morita K, Ozeki K, Sakai R, Sumita T, Yoneda A, Kasamatsu Y, Komori Y, Shinohara A, Kikunaga H, Kudo H, Nishio K, Ooe K, Sato N, Tsukada K (2012) Production of 265Sg in the 248Cm(22Ne,5n)265Sg reaction and decay properties of two isomeric states in 265Sg. Phys Rev C 85(2):024611CrossRefGoogle Scholar
  38. 38.
    Lazarev YA, Lobanov YV, Oganessian YT, Utyonkov VK, Abdullin FS, Buklanov GV, Gikal BN, Iliev S, Mezentsev AN, Polyakov AN, Sedykh IM, Shirokovsky IV, Subbotin VG, Sukhov AM, Tsyganov YS, Zhuchko VE, Lougheed RW, Moody KJ, Wild JF, Hulet EK, McQuaid JH (1994) Discovery of enhanced nuclear stability near the deformed shells N = 162 and Z = 108. Phys Rev Lett 73(5):624CrossRefGoogle Scholar
  39. 39.
    Ghiorso A, Nurmia M, Eskola K, Eskola P (1970) 261Rf: New isotope of element 104. Phys Lett 32B(2):95–98CrossRefGoogle Scholar
  40. 40.
    Lazarev YA, Lobanov YV, Oganessian YT, Utyonkov VK, Abdullin FS, Polyakov AN, Rigol J, Shirokovsky IV, Tsyganov YS, Iliev S, Subbotin VG, Sukhov AM, Buklanov GV, Mezentsev AN, Subotic K, Moody KJ, Stoyer NJ, Wild JF, Lougheed RW (2000) Decay properties of 257No, 261Rf, and 262Rf. Phys Rev C 62(6):064307CrossRefGoogle Scholar
  41. 41.
    Türler A, Dressler R, Eichler B, Gäggeler HW, Jost DT, Schädel M, Brüchle W, Gregorich KE, Trautmann N, Taut S (1998) Decay properties of 265Sg (Z = 106) and 266Sg (Z = 106). Phys Rev C 57(4):1648CrossRefGoogle Scholar
  42. 42.
    Schädel M, Brüchle W, Dressler R, Eichler B, Gäggeler HW, Günther R, Gregorich KE, Hoffman DC, Hübener S, Jost DT, Kratz JV, Paulus W, Schumann D, Timokhin S, Trautmann N, Türler A (1997) Chemical properties of element 106 (seaborgium). Nature 388(6637):55–57CrossRefGoogle Scholar
  43. 43.
    Hübner S, Taut S, Vahle A, Dressler R, Eichler B, Gäggeler HW, Jost D, Piguet D, Türler A, Brüchle W (2001) Physico-chemical characterization of seaborgium as oxide hydroxide. Radiochim Acta 89:737–741Google Scholar
  44. 44.
    Haba H, Kaji D, Kikunaga H, Kudou Y, Morimoto K, Morita K, Ozeki K, Sumita T, Yoneda A, Kasamatsu Y, Komori Y, Ooe K, Shinohara A (2011) Production and decay properties of the 1.9-s isomeric state in Rf-261. Phys Rev C 83(3):034602CrossRefGoogle Scholar
  45. 45.
    Henderson R (1990) Chemical and nuclear properties of lawrencium, (element 103)and hahnium (element 105). PhD-thesis, Department of Chemistry, University of California, BerkeleyGoogle Scholar
  46. 46.
    Zvara I (1985) Simulation of thermochromatographic processes by the Monte Carlo method. Radiochim Acta 38:95–101Google Scholar
  47. 47.
    Düllmann ChE, Ackermann D, Brüchle W, Heßberger FP, Jäger E, Khuyagbaatar J, Schädel M, Schausten B, Schimpf E, Schött HJ, Semchenkov A, Dvorak J, Gorshkov A, Schuber R, Türler A, Yakushev A, Eberhardt K, Hummrich H, Kratz JV, Omtvedt JP, Opel K, Gates JM, Gregorich K E, Dressler R, Eichler R, Gan Z (2007) TASCA as a preseparator: Recoil transfer chamber commissioning. In: GSI Scientific Report 2006/GSI Report 2007-1 p 146Google Scholar
  48. 48.
    Wilk PA, Gregorich KE, Türler A, Laue CA, Eichler R, Ninov V, Adams JL, Kirbach UW, Lane MR, Lee DM, Patin JB, Shaughnessy DA, Strellis DA, Nitsche H, Hoffman DC (2000) Evidence for new isotopes of element 107: 266Bh and 267Bh. Phys Rev Lett 85(13):2697CrossRefGoogle Scholar
  49. 49.
    Morita K, Morimoto K, Kaji D, Haba H, Ozeki K, Kudou Y, Sato N, Sumita T, Yoneda A, Ichikawa T, Fujimori Y, Goto SI, Ideguchi E, Kasamatsu Y, Katori K, Komori Y, Koura H, Kudo H, Ooe K, Ozawa A, Tokanai F, Tsukada K, Yamaguchi T, Yoshida A (2009) Decay properties of 266Bh and 262Db produced in the 248Cm + 23Na reaction. J Phys Soc Jap 78(6):064201CrossRefGoogle Scholar
  50. 50.
    Dvorak J, Brüchle W, Chelnokov M, Dressler R, Düllmann ChE, Eberhardt K, Gorshkov V, Jäger E, Krücken R, Kuznetsov A, Nagame Y, Nebel F, Novackova Z, Qin Z, Schädel M, Schausten B, Schimpf E, Semchenkov A, Thörle P, Türler A, Wegrzecki M, Wierczinski B, Yakushev A, Yeremin A (2006) Doubly magic nucleus 270Hs162. Phys Rev Lett 97(24):242501CrossRefGoogle Scholar
  51. 51.
    Oganessian YT, Abdullin FS, Bailey PD, Benker DE, Bennett ME, Dmitriev SN, Ezold JG, Hamilton JH, Henderson RA, Itkis MG, Lobanov YV, Mezentsev AN, Moody KJ, Nelson SL, Polyakov AN, Porter CE, Ramayya AV, Riley FD, Roberto JB, Ryabinin MA, Rykaczewski KP, Sagaidak RN, Shaughnessy DA, Shirokovsky IV, Stoyer MA, Subbotin VG, Sudowe R (2010) Synthesis of a new element with atomic number Z = 117. Phys Rev Lett 104(14):142502CrossRefGoogle Scholar
  52. 52.
    Khuyagbaatar J, Yakushev A, Düllmann ChE, Ackermann D, Andersson LL, Asai M, Block M, Boll RA, Brand H, Cox DM, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates JM, Gharibyan N, Golubev P, Gregorich KE, Hamilton JH, Hartmann W, Herzberg RD, Heßberger FP, Hinde DJ, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz JV, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A, Mokry C, Nitsche H, Omtvedt JP, Pang GK, Papadakis P, Renisch D, Roberto J, Rudolph D, Runke J, Rykaczewski KP, Sarmiento LG, Schädel M, Schausten B, Semchenkov A, Shaughnessy DA, Steinegger P, Steiner J, Tereshatov EE, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Ward DE, Wegrzecki M, Wiehl N, Van Cleve SM, Yakusheva V (2014) 48Ca + 249Bk fusion reaction leading to element Z = 117: Long-lived a-decaying Db-270 and discovery of Lr-266. Phys Rev Lett 112:172501CrossRefGoogle Scholar
  53. 53.
    Morita K, Morimoto K, Kaji D, Haba H, Ozeki K, Kudou Y, Sumita T, Wakabayashi Y, Yoneda A, Tanaka K, Yamaki S, Sakai R, Akiyama T, Goto SI, Hasebe H, Huang M, Huang T, Ideguchi E, Kasamatsu Y, Katori K, Kariya Y, Kikunaga H, Koura H, Kudo H, Mashiko A, Mayama K, Mitsuoka S, Moriya T, Murakami M, Murayama H, Namai S, Ozawa A, Sato N, Sueki K, Takeyama M, Tokanai F, Yamaguchi T, Yoshida A (2012) New result in the production and decay of an isotope, 278113, of the 113th element. J Phys Soc Jap 81(10):103201CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Julia Even
    • 1
  • Dieter Ackermann
    • 2
  • Masato Asai
    • 5
  • Michael Block
    • 2
  • Holger Brand
    • 2
  • Antonio Di Nitto
    • 3
  • Christoph E. Düllmann
    • 1
    • 2
    • 3
  • Robert Eichler
    • 6
    • 7
  • Fangli Fan
    • 8
  • Hiromitsu Haba
    • 4
  • Willi Hartmann
    • 2
  • Annett Hübner
    • 2
  • Fritz P. Heßberger
    • 2
  • Minqhiu Huang
    • 4
  • Egon Jäger
    • 2
  • Daiya Kaji
    • 4
  • Jumpei Kanaya
    • 4
  • Yusuke Kaneya
    • 5
  • Jadambaa Khuyagbaatar
    • 1
    • 2
  • Birgit Kindler
    • 2
  • Jens V. Kratz
    • 3
  • Jörg Krier
    • 2
  • Yuki Kudou
    • 4
  • Nikolaus Kurz
    • 2
  • Mustapha Laatiaoui
    • 1
  • Bettina Lommel
    • 2
  • Joachim Maurer
    • 2
  • Sunao Miyashita
    • 5
    • 9
  • Kouji Morimoto
    • 4
  • Kosuke Morita
    • 4
    • 10
  • Masashi Murakami
    • 4
    • 11
  • Yuichiro Nagame
    • 5
  • Heino Nitsche
    • 12
    • 13
  • Kazuhiro Ooe
    • 11
  • Zhi Qin
    • 8
  • Tetsuya K. Sato
    • 5
  • Matthias Schädel
    • 5
  • Jutta Steiner
    • 2
  • Takayuki Sumita
    • 4
  • Mirei Takeyama
    • 4
  • Kengo Tanaka
    • 4
  • Atsushi Toyoshima
    • 5
  • Kazuaki Tsukada
    • 5
  • Andreas Türler
    • 6
    • 7
  • Ilya Usoltsev
    • 6
    • 7
  • Yasuo Wakabayashi
    • 4
  • Yang Wang
    • 8
  • Norbert Wiehl
    • 3
  • Alexander Yakushev
    • 2
  • Sayaka Yamaki
    • 4
    • 14
  1. 1.Helmholtz Institute MainzMainzGermany
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Johannes Gutenberg University MainzMainzGermany
  4. 4.Nishina Center, RIKENSaitamaJapan
  5. 5.Advanced Science Research CenterJAEAIbarakiJapan
  6. 6.University of BerneBerneSwitzerland
  7. 7.Paul Scherrer InstituteVilligenSwitzerland
  8. 8.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  9. 9.Hiroshima UniversityHigashi-HiroshimaJapan
  10. 10.Kyushu UniversityFukuokaJapan
  11. 11.Niigata UniversityNiigataJapan
  12. 12.University of CaliforniaBerkeleyUSA
  13. 13.Lawrence Berkeley National LaboratoryBerkeleyUSA
  14. 14.Saitama UniversitySaitamaJapan

Personalised recommendations