Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 1727–1736 | Cite as

Implementation of calculation codes in gamma spectrometry measurements for corrections of systematic effects

  • Sofia Jonsson
  • Tim Vidmar
  • Henrik Ramebäck
Article
  • 191 Downloads

Abstract

Four calculation codes were implemented on experimental data to calculate corrections of common systematic effects within high resolution gamma spectrometry. The detector parameters were sparsely optimized to imitate the usage that can be expected from personnel with limited experience. The transfer of the efficiency from the calibration geometry (60 ml, density 1.0 g/cm3) to 200 ml geometry (density 1.5 g/cm3) failed with all codes, which was discouraging. However, a majority of the other corrected activities deviated with less than 10 % from the reference activity values, even for density corrections or when corrections had been calculated for new source-detector-geometries. Smaller deviations, around 5 % or less, were achieved when corrections were done within the calibrated geometry. This shows a robustness of the calculation codes even if the in-data is not perfectly optimized.

Keywords

Gamma-ray spectrometry Coincidence summing Efficiency transfer Simulation Systematic effects 

Notes

Acknowledgments

The Swedish Ministry of defence is greatly acknowledged for funding this work.

References

  1. 1.
    Andreev DS, Erokhina KI, Zvonov VS, Lemberg IKh (1973) Determination of ɣ-detection efficiency in energy peaks by means of nuclides having complicated decay scheme in close-geometry conditions. Izv Akad Nauk SSSR Ser Fiz 37(8):1609–1612Google Scholar
  2. 2.
    Jackman KR, Biegalski SR (2009) Methods and software for predicting germanium detector absolute full-energy peak efficiencies. J Radioanal Nucl Chem 279:355–360CrossRefGoogle Scholar
  3. 3.
    Vargas MJ, Timón A, Díaz NC, Sánchez DP (2002) Influence of the geometrical characteristics of an HPGe detector on its efficiency. J Radioanal Nucl Chem 253:439–443CrossRefGoogle Scholar
  4. 4.
    Helmer RG, Hardy JC, Iacob VE, Sanchez-Vega M, Neilson RG, Nelson J (2003) The use of Monte Carlo calculations in the determination of a Ge detector efficiency curve. Nucl Instrum Meth Phys Res A 511:360–381CrossRefGoogle Scholar
  5. 5.
    Ródenas J, Pascual A, Zarza I, Serradell V, Ortiz J, Ballesteros L (2003) Analysis of the influence of germanium dead layer on detector calibration simulation for environmental radioactive samples using the Monte Carlo method. Nucl Instrum Meth Phys Res A 496:390–399CrossRefGoogle Scholar
  6. 6.
    Maleka PP, Maučec M (2005) Monte Carlo uncertainty analysis of germanium detector response to γ-rays with energies below 1 MeV. Nucl Instrum Meth Phys Res A 538:631–639CrossRefGoogle Scholar
  7. 7.
    Johnston P, Hult M, Gasparro J (2006) Cascade summing in close geometry gamma-ray spectrometry. Appl Radiat Isot 64:1323–1328CrossRefGoogle Scholar
  8. 8.
    Mihaljević N, Dlabač A, Jovanović S (2012) Accounting for detector crystal edge rounding in gamma-efficiency calculations theoretical elaboration and application in ANGLE software. Nucl Tech Rad Prot 27:1CrossRefGoogle Scholar
  9. 9.
    Moens L, De Donder J, Xilei L, De Corte F, De Wispelaere A, Simonts A (1981) Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instrum Meth Phys Res 187:451–472CrossRefGoogle Scholar
  10. 10.
    Vidmar T, Vodenik B, Nečemer M (2010) Efficiency transfer between extended sources. Appl Radiat Isot 68:2352–2354CrossRefGoogle Scholar
  11. 11.
    Szentmiklósi L, Belgya T, Maróti B, Kis Z (2014) Characterization of HPGe gamma spectrometers by geant4 Monte Carlo simulations. J Radioanal Nucl Chem 300:553–558CrossRefGoogle Scholar
  12. 12.
    Kováčik A, Sýkora I, Povinec PP (2013) Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. J Radioanal Nucl Chem 298:665–672CrossRefGoogle Scholar
  13. 13.
    Bossus DAW, Swagten JJJM, Kleinjans PAM (2006) Experience with a factory-calibrated HPGe detector. Nucl Instrum Meth Phys Res A 564:650–654CrossRefGoogle Scholar
  14. 14.
    Lépy M-C, Altzitzoglou T, Anagnostakis MJ, Arnold D, Capogni M, Ceccatelli A, De Felice P, Dersch R, Dryak P, Fazio A, Ferreux L, Guardati M, Han J, B, Hurtado S, Karfopoulos KL, Klemola S, Kovar P, Laubenstein M, Lee KB, Ocone R, Ott O, Sima O, Sudar S, Švec A, Chau Van Tao, Tran Thien Thanh, Vidmar T (2010) Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry. Appl Radiat Isot 68:1407–1412Google Scholar
  15. 15.
    Vidmar T, Çelik N, Cornejo Díaz N, Dlabac A, Ewa IOB, Carrazana González JA, Hult M, Jovanović S, Lépy M-C, Mihaljević N, Sima O, Tzika F, Jurado Vargas M, Vasilopoulo T, Vidmar G (2010) Testing efficiency transfer codes for equivalence. Appl Radiat Isot 68:355–359CrossRefGoogle Scholar
  16. 16.
    Vidmar T, Capogni M, Hult M, Hurtado S, Kastlander J, Lutter G, Lépy M-C, Martinkovič J, Ramebäck H, Sima O, Tzika F, Vidmar G (2014) Equivalence of computer codes for calculation of coincidence summing correction factors. Appl Radiat Isot 87:336–341CrossRefGoogle Scholar
  17. 17.
    Plenteda R (2002) A Monte Carlo based virtual gamma spectroscopy laboratory. Ph.D. Thesis. Universitätsbibliothek der Technischen Universität WienGoogle Scholar
  18. 18.
    Sima O, Arnold D, Dovlete C (2001) GESPECOR: a versatile tool in gamma-ray spectrometry. J Radioanal Nucl Chem 248(2):359–364CrossRefGoogle Scholar
  19. 19.
    Jovanović S, Dlabač A, Mihaljević N (2010) ANGLE v2, 1—New versions of the computer code for semiconductor detector gamma-efficiency calculations. Nucl Instrum Meth Phys Res A 622:385–391CrossRefGoogle Scholar
  20. 20.
    Vidmar T (2005) EFFTRAN—A Monte Carlo efficiency transfer code for gamma ray spectrometry. Nucl Instrum Meth Phys Res A 550:603–608CrossRefGoogle Scholar
  21. 21.
    Ramebäck H, Tovedal A, Nygren U, Lagerkvist P, Boson J, Johansson E, Johansson J (2009) Implementing combined uncertainty according to GUM into a commercial gamma spectrometric software. J Radioanal Nucl Chem 282:979–983CrossRefGoogle Scholar
  22. 22.
    Lépy MC, Altzitzoglou T, Arnold D, Bronson F, Capote Noy R, Décombaz M, De Corte F, Edelmaier R, Herrera Peraza E, Klemola S, Korun M, Kralik M, Neder H, Plagnard J, Pommé S, de Sanoit J, Sima O, Ugletveit F, Van Velzen L, Vidmar T (2001) Intercomparison of efficiency transfer software for gamma-ray spectrometry. Appl Radiat Isot 55:493–503CrossRefGoogle Scholar
  23. 23.
    Sima O, Arnold D (2000) Accurate computation of coincidence summing corrections in low level gamma-ray spectrometry. Appl Radiat Isot 53:51–56CrossRefGoogle Scholar
  24. 24.
    Sima O, Arnold D (2002) Transfer of the efficiency calibration of Germanium gamma-ray detectors using the GESPECOR software. Appl Radiat Isot 56:71–75CrossRefGoogle Scholar
  25. 25.
    Kessel R, Berglund M, Taylor PDP, Wellum R (2001) How to treat correlations in the uncertainty budget, when combining results from different measurements. S Adv Math 57:231–241Google Scholar
  26. 26.
    Pereira de Oliveira Junior O, De Bolle W, Alonso A, Richter S, Wellum R, Ponzevera E, Sarkis JES, Kessel R (2010) Int J Mass Spectrom 291:48–54CrossRefGoogle Scholar
  27. 27.
    Vidmar T, Vodenik B (2010) Extended relative method of activity determination. Appl Radiat Isot 68:2421–2424CrossRefGoogle Scholar
  28. 28.
    Vidmar T, Aubineau-Laniece I, Anagnostakis MJD, Arnold Brettner-Messler R, Budjas D, Capogni M, Dias MS, De Geer L-E, Fazio A, Gasparro J, Hult M, Hurtado S, Vargas MJ, Laubenstein M, Lee KB, Lee Y-K, Lépy M-C, Maringer F-J, Medina Peyres V, Mille M, Moralles M, Nour S, Plenteda R, Rubio Montero MP, Sima O, Tomei C, Vidmar G (2008) An intercomparison of Monte Carlo codes used in gamma-ray spectrometry. Appl Radiat Isot 66:764–768CrossRefGoogle Scholar
  29. 29.
    Xie F, Jiang W, Bai T, Yu G (2014) A study on activity determination of volume sources using point-like standard sources and Monte Carlo simulations. Radiat Phys Chem 103:53–56CrossRefGoogle Scholar
  30. 30.
    Vidmar T, Gasparro J (2009) Crystal rounding and the efficiency transfer method in gamma-ray spectrometry. Appl Radiat Isot 67:2057–2061CrossRefGoogle Scholar
  31. 31.
    Russ W, Venkataraman R, Bronson F (2005) Validation testing of the genie 2000 cascade summing correction. J Radioanal Nucl Chem 264:193–197CrossRefGoogle Scholar
  32. 32.
    Abbas M, Simonelli F, Alberti FD, Forte M, Stroosnijder MF (2002) Reliability of two calculation codes for efficiency calibration of HPGe detectors. Appl Radiat Isot 56:703–709CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Swedish Defence Research AgencyFOI, Division of CBRN Defence and SecurityUmeåSweden
  2. 2.SCK-CEN, Belgian Nuclear Research CentreMolBelgium
  3. 3.Department of Chemical and Biological Engineering, Nuclear ChemistryChalmers University of TechnologyGöteborgSweden

Personalised recommendations