Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2445–2455 | Cite as

Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater

  • N. Asadollahi
  • R. YavariEmail author
  • H. Ghanadzadeh
Article
  • 232 Downloads

Abstract

A novel hybrid based on oxidized multiwalled-carbon nanotubes (ox-MWCNTs) and stannic-molybdophosphate (SMP) were synthesized and used accompanied by its pristine materials to investigate strontium removal from aqueous solution. These materials were characterized by transmission electron microscopy, nitrogen adsorption/desorption isotherms, Fourier-transform infrared spectroscopy, thermogravimetry and X-ray diffraction analysis. Strontium adsorption on the ox-MWCNTs, SMP and hybrid as a function of initial strontium concentration, contact time, adsorbents dosage, pH and ionic strength was studied. The prepared hybrid showed the highest adsorption capacities for strontium which suggests that it can be a promising adsorbent for strontium removal from nuclear waste.

Keywords

Hybrid Strontium Multiwalled carbon nanotubes Stannic molybdophosphate Adsorption 

References

  1. 1.
    Jakopic R, Benedik L (2005) Tracer studies on Sr resin and determination of 90Sr in environmental samples. Acta Chim Solv 52:297–302Google Scholar
  2. 2.
    Elvers B, Hawkins B, Schulz S (1990) Radionuclides; Ullmann’s encyclopedia of industrial chemistry. VCH Publishers, New YorkGoogle Scholar
  3. 3.
    Yavari R, Huang YD, Mostofizadeh A (2012) Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 285:703–710CrossRefGoogle Scholar
  4. 4.
    Sylvester P, Behrens EA, Graziano GM, Clearfield A (1999) An assessment of inorganic ion-exchange materials for the removal of strontium from simulated hanford tank wastes. Sep Sci Technol 34:1981–1992CrossRefGoogle Scholar
  5. 5.
    Draye M, Buzit GL, Foos J, Guy A, Leclere B, Doutreluingne P, Lemaire M (1997) A recovery process of strontium from acidic nuclear waste streams. Sep Sci Technol 32:1725–1737CrossRefGoogle Scholar
  6. 6.
    Wood DJ, Law JD (1997) Evaluation of the SREX solvent extraction process for the removal of 90Sr and hazardous metals from acidic nuclear waste solutions containing high concentrations of interfering alkali metal Ions. Sep Sci Technol 32:241–253CrossRefGoogle Scholar
  7. 7.
    Veshev SA, Alekseev SG, Dukhanin AS (1996) Migration of radionuclides in soil under a static electric field. Geokhimiya 34:908–911Google Scholar
  8. 8.
    Lobet JM, Colomina MT, Domingo JL, Corbella J (1993) Evaluation of potential strontium chelators in an octanol–water system. J Health Phys 65:541–545CrossRefGoogle Scholar
  9. 9.
    Yusan S, Erenturk S (2011) Adsorption characterization of strontium on PAN/zeolite composite adsorbent. W J Nucl Sci Tech 1:6–12CrossRefGoogle Scholar
  10. 10.
    Yavari R, Ahmadi SJ, Huang YD, Khanchi AR, Bagheri G, He JM (2009) Synthesis, characterization and analytical application of a new inorganic cation exchanger—titanium(IV) molybdophosphate. Talanta 77:1179–1184CrossRefGoogle Scholar
  11. 11.
    Gupta VK, Singh P, Rahman N (2005) Synthesis, characterization, and analytical application of zirconium(IV) selenoiodate, a new cation exchanger. Anal Bioanal Chem 381:471–476CrossRefGoogle Scholar
  12. 12.
    Maragheh MG, Waqif-Husain S, Khanchi AR (1999) Selective sorption of radioactive cesium and strontium on stannic molybdophosphate ion exchanger. J Appl Radiat Isot 50:459–465CrossRefGoogle Scholar
  13. 13.
    Sun Z, Zhang X, Han B, Wu Y, An G, Liu Z, Miao S, Miao Z (2007) Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide–ethanol solution. Carbon 45:2589–2596CrossRefGoogle Scholar
  14. 14.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  15. 15.
    Merkoci A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174CrossRefGoogle Scholar
  16. 16.
    Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410CrossRefGoogle Scholar
  17. 17.
    Yu JG, Zhao XH, Yang H, Chen XH, Yang Q, Yu LY, Jiang JH, Chen XQ (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483:241–251CrossRefGoogle Scholar
  18. 18.
    Yu JG, Zhao XH, Yu LY, Jiao FP, Jiang JH, Chen XQ (2014) Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J Radioanal Nucl Chem 299:1155–1163CrossRefGoogle Scholar
  19. 19.
    Kuo CY, Lin HY (2009) Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment. Desalination 249:792–796CrossRefGoogle Scholar
  20. 20.
    Shamspur T, Mostafavi A (2009) Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II). J Hazard Mater 168:1548–1553CrossRefGoogle Scholar
  21. 21.
    Yang S, Li J, Shao D, Hu J, Wang K (2009) Adsorption of nickel (II) on oxidized multiwall carbon nanotubes. J Hazard Mater 66:109–116CrossRefGoogle Scholar
  22. 22.
    Xu D, Tan X, Chen C, Wang X (2008) Removal of lead (II) from aqueous solution by oxidized multi walled carbon nanotubes. J Hazard Mater 154:407–416CrossRefGoogle Scholar
  23. 23.
    Wu CH (2007) Studies of the equilibrium and thermodynamics of the adsorption of copper (II) onto as-produced and modified carbon nanotubes. J Colloid Interface Sci 311:338–346CrossRefGoogle Scholar
  24. 24.
    Tuzen M, Soylak M (2007) Multiwall carbon nanotubes for speciation of chromium in environmental samples. J Hazard Material 147:219–225CrossRefGoogle Scholar
  25. 25.
    Lu C, Chiu H, Liu C (2006) Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855CrossRefGoogle Scholar
  26. 26.
    Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Sorption of Amersium-243 to multi-wall carbon nanotubes. Environ Sci Technol 39:2856–2860CrossRefGoogle Scholar
  27. 27.
    Chen CL, Li XL, Wang XK (2007) Application of oxidized multi-wall carbon nanotubes for thorium (IV) adsorption. Radiochim Acta 95:261–266CrossRefGoogle Scholar
  28. 28.
    Tan XL, Xu D, Chen CL, Wang XK, Hu WP (2008) Adsorption and kinetic desorption study of 152 + 154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim Acta 96:23–30Google Scholar
  29. 29.
    Sun Y, Yang S, Sheng G, Guo Z, Wang Z (2012) The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Environ Radio 105:40–47CrossRefGoogle Scholar
  30. 30.
    Yavari R, Huang YD, Ahmadi SJ (2011) Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 287:393–401CrossRefGoogle Scholar
  31. 31.
    Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Pur Technol 58:224–231CrossRefGoogle Scholar
  32. 32.
    Karina Cuentas-Gallegos A, Martı´nez-Rosales R, Rinco ME, Hirata GA, Orozco G (2006) Design of hybrid materials based on carbon nanotubes and polyoxometalates. Opt Mater 29:126–133CrossRefGoogle Scholar
  33. 33.
    Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  34. 34.
    Kiselev AV (1968) Adsorption properties of hydrophobic surface. J coll Inter Sci 28:430–442CrossRefGoogle Scholar
  35. 35.
    Kosa SA, Al-Zhrani G, Abdel Salam M (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 181:159–168CrossRefGoogle Scholar
  36. 36.
    Socrates G (1980) Infrared characteristic group frequencies. Wiley, New YorkGoogle Scholar
  37. 37.
    Vukovic GD, Marinkovic AD, Colic M, Ristic MD, Aleksic R, Peric-Grujic AA, Uskokovic PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J 157:238–248CrossRefGoogle Scholar
  38. 38.
    Ovejero G, Sotelo JL, Romero MD, Rodrıguez A, Ocana MA, Rodriıguez G (2006) Multiwalled carbon nanotubes for liquid-phase oxidation. Functionalization, characterization, and catalytic activity. Ind Eng Chem Res 45:2206–2212CrossRefGoogle Scholar
  39. 39.
    Pechkovaskii VV, Melnikova RY, Dzyuba ED (1985) Atlas of infrared spectra of phosphates orthophosphate. Nauka, MoscowGoogle Scholar
  40. 40.
    Zhu CL, Zhang ML, Qiao YJ, Gao P, Chen YJ (2010) High capacity and good cycling stability of multi-walled carbon nanotube/SnO2 core–shell structures as anode materials of lithium-ion batteries. Mater Res Bull 45:437–441CrossRefGoogle Scholar
  41. 41.
    Xu J, Yao P, Li X, He F (2008) Synthesis and characterization of water soluble and conducting sulfonated polyaniline/para-ethylenediaminefunctionalized multi-walled carbon nanotubes nano-composite. Mater Sci Eng, B 151:210–219CrossRefGoogle Scholar
  42. 42.
    Bustero I, Ainara GA, Isabel O, Roberto MO, Inés RN, Amaya A (2006) Control of the properties of carbon nanotubes synthesized by CVD for application in electrochemical biosensors. Microchim Acta 152:239–247CrossRefGoogle Scholar
  43. 43.
    Cole T, Bidoglio G, Soupioni M, Gorman M, Gibson N (2000) Diffusion mechanisms of multiple strontium species in clay. Geochim Cosmochim Acta 64:385–396CrossRefGoogle Scholar
  44. 44.
    Reddad Z, Gerente C, Andres Y, Cloirec LP (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073CrossRefGoogle Scholar
  45. 45.
    Yavari R, Davarkhah R (2013) Application of modified multiwall carbon nanotubes as a sorbent for zirconium (IV) adsorption from aqueous solution. J Radioanal Nucl Chem 298:835–845CrossRefGoogle Scholar
  46. 46.
    Tobiasz A, Walas S, Hernández AS, Mrowiec H (2012) Application of multiwall carbon nanotubes impregnated with 5-dodecylsalicylaldoxime for on-line copper preconcentration and determination in water samples by flame atomic absorption spectrometry. Talanta 96:89–95CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Nuclear Science and Technology Research InstituteNFCSTehranIran
  2. 2.Department of Chemical EngineeringUniversity of GuilanRashtIran

Personalised recommendations