Advertisement

A comparative study for the determination of uranium and uranium isotopes in granitic groundwater

  • Min Hoon Baik
  • Mun Ja Kang
  • Soo Young Cho
  • Jongtae Jeong
Article

Abstract

In this study, the activities of uranium isotopes for granitic groundwater samples were determined using alpha (α)-particle spectrometry and liquid scintillation counting (LSC). The activity ratios of 234U/238U and the total mass concentration of uranium were also investigated for groundwater samples from different depths. The uranium isotopes were out of secular equilibrium owing to an increased water–rock interaction and to different origins of the groundwater samples. The concentration of 238U in the groundwater samples determined by ICP-MS, showed relatively good consistency with those by α-particle spectrometry, and less so for those determined by LSC.

Keywords

Uranium isotope Granitic groundwater Activity ratio Alpha-particle spectrometry Liquid scintillation counter 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea grant (NRF No. 2012M2A8A5025589) funded by the Korea government (the Ministry of Science, ICT & Future Planning (MSIP)).

References

  1. 1.
    Tripathi RM, Sahoo SK, Mohapatra S, Lenka P, Dubey JS, Puranik VD (2013) Study of uranium isotopic composition in groundwater and deviation from secular equilibrium condition. J Radioanal Nucl Chem 295:1195–1200CrossRefGoogle Scholar
  2. 2.
    Gascoyne M (1982) In: Ivanovich M, Harmon RS (eds) Uranium series disequilibrium: applications to environmental problems. Clarendon Press, OxfordGoogle Scholar
  3. 3.
    Suutarinen R, Blomqvist R, Halonen S, Jaakkola T (1991) Uranium in groundwater in Palmottu analogue study site in Finland. Radiochim Acta 52(53):373–380Google Scholar
  4. 4.
    Reynolds BC, Wasserburg GJ, Baskaran M (2003) The transport of U- and Th-series nuclides in sandy confined aquifers. Geochim Cosmochim Acta 67:1955–1972CrossRefGoogle Scholar
  5. 5.
    Boryo A (2013) Determination of uranium isotopes in environmental samples. J Radioanal Nucl Chem 295:621–631CrossRefGoogle Scholar
  6. 6.
    Chkir N, Guendouz A, Zouari K, Ammar FH, Moulla AS (2009) Uranium isotopes in groundwater from the continental intercalaire aquifer in Algerian Tunisian Sahara (North Africa). J Environ Radioact 100:649–656CrossRefGoogle Scholar
  7. 7.
    Grabowski P, Bem H (2012) Uranium isotopes as a tracer of groundwater transport studies. J Radioanal Nucl Chem 292:1043–1048CrossRefGoogle Scholar
  8. 8.
    Montaña M, Fons J, Corbacho JA, Camacho A, Zapata-García D, Guillén J, Serrano I, Tent J, Baeza A, Llauradó M, Callés I (2013) A comparative experimental study of gross alpha methods in natural waters. J Environ Radioac 118:1–8CrossRefGoogle Scholar
  9. 9.
    Tosheva Z, Stoyanova K, Nikolchev L (2004) Comparison of different methods for uranium determination in water. J Environ Radioac 72:47–55CrossRefGoogle Scholar
  10. 10.
    Vidic A, Ilić Z, Benedik L (2013) Recent measurements of 234U/238U isotope ratio in spring waters from the Hadzici area. J Environ Radioac 120:6–13CrossRefGoogle Scholar
  11. 11.
    Rusconi R, Azzellino A, Bellinzona S, Forte M, Gallini R, Sgorbati G (2004) Assessment of drinking water radioactivity content by liquid scintillation counting: set up of high sensitivity and emergency procedures. Anal Bioanal Chem 379:247–253CrossRefGoogle Scholar
  12. 12.
    Jabbágy V, Wätjen U, Meresova J (2010) Current status of gross alpha/beta activity analysis in water samples: a short overview of methods. J Radioanal Nucl Chem 286:393–399CrossRefGoogle Scholar
  13. 13.
    Baik MH, Lee SY, Shon WJ (2009) Retention of uranium(VI) by laumontite, a fracture-filling material of granite. J Radioanal Nucl Chem 280:69–77CrossRefGoogle Scholar
  14. 14.
    Forte M, Rusconi R, Di Caprio E, Bellinzona S, Sgorbati G (2003) In: Warwick P (ed) Environmental chemical analysis, vol II. RSC Cambridge, OxfordGoogle Scholar
  15. 15.
    Osmond JK, Cowart JB, Ivanovich M (1983) Uranium isotopic disequilibrium in groundwater as an indicator of anomalies. Int J Appl Radiat Isot 34:283–308CrossRefGoogle Scholar
  16. 16.
    Gascoyne M (1989) High levels of uranium and radium in groundwaters at Canada’s Underground Research Laboratory, Lac Du Bonnet, Manitoba, Canada. Appl Geochem 4:577–591CrossRefGoogle Scholar
  17. 17.
    Smellie J, Tullborg E-L, Nilsson A-C, Sandström B, Waber N, Gimeno M, Gascoyne M (2008) Explorative analysis of major components and isotopes. SDM-Site Forsmark. SKB R-08-84, Swedish Nuclear Fuel and Waste Management, StockholmGoogle Scholar
  18. 18.
    Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009) Uranium speciation in drinking water from drilled wells in Southern Finland and its potential links to health effects. Environ Sci Technol 43:3941–3946CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Min Hoon Baik
    • 1
  • Mun Ja Kang
    • 1
  • Soo Young Cho
    • 2
  • Jongtae Jeong
    • 1
  1. 1.Korea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Korea Institute of Geoscience and ResourcesDaejeonRepublic of Korea

Personalised recommendations