Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2565–2570 | Cite as

Measurement of 90Sr in soil samples affected by the Fukushima Daiichi Nuclear Power Plant accident

  • N. Kavasi
  • S. K. Sahoo
  • A. Sorimachi
  • S. Tokonami
  • T. Aono
  • S. Yoshida
Article

Abstract

90Sr activity concentration was measured in four soil samples (0–10 cm) collected from the exclusion zone around the Fukushima Daiichi Nuclear Power Plant. The open chemical digestion method was used for sample decomposition with a mixture of acids. The strontium separation was achieved with strontium selective resin (Sr-resin). The activity of 90Sr was determined with liquid scintillation counter. Owing to the atmospheric nuclear weapon tests, the soil in Japan is contaminated with 90Sr. Significant Fukushima contamination was not noticed by the results of this study due to background level. The detected 90Sr activities were 8.9 ± 0.8, 20 ± 1.3, <6.8, and 23.4 ± 1.5 Bq kg−1, respectively.

Keywords

90Sr Fukushima Soil Liquid scintillation counter 

References

  1. 1.
    Baba M (2013) Fukushima accident: what happened? Radiat Meas 55:17–21. doi:10.1016/j.radmeas.2013.01.013 CrossRefGoogle Scholar
  2. 2.
    Onishi Y, Voitsekhovich OV, Zheleznyak MJ (2007) What have we learned? The successes and failures to mitigate water contamination over 20 years. Springer, New YorkGoogle Scholar
  3. 3.
    Eisenbud M, Gesell T (1997) Environmental radioactivity from natural, industrial & military sources. Academic Press, CaliforniaGoogle Scholar
  4. 4.
    Yamaguchi M, Kitamura A, Oda Y, Onishi Y (2014) Predicting the long-term Cs distribution in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident: a parameter sensitivity analysis. J Environ Radioact 135C:135–146. doi:10.1016/j.jenvrad.2014.04.011 CrossRefGoogle Scholar
  5. 5.
    Hosoda M, Tokonami S, Akiba S, Kurihara O, Sorimachi A, Ishikawa T, Momose T, Nakano T, Mariya Y, Kashiwakura I (2013) Estimation of internal exposure of the thyroid to (131)I on the basis of (134)Cs accumulated in the body among evacuees of the Fukushima Daiichi Nuclear Power Station accident. Environ Int 61:73–76. doi:10.1016/j.envint.2013.09.013 CrossRefGoogle Scholar
  6. 6.
    Kanai Y (2012) Monitoring of aerosols in Tsukuba after Fukushima Nuclear Power Plant incident in 2011. J Environ Radioact 111:33–37. doi:10.1016/j.jenvrad.2011.10.011 CrossRefGoogle Scholar
  7. 7.
    Hirose K (2012) 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J Environ Radioact 111:13–17. doi:10.1016/j.jenvrad.2011.09.003 CrossRefGoogle Scholar
  8. 8.
    Watanabe Y, Ichikawa SE, Kubota M, Takano T, Mizoguchi M, Kubota Y, Fuma S, Yoshida S (2012) Effects of radionuclide contamination on forest trees in the exclusion zone around the Fukushima Daiichi Nuclear Power Plant. In: Proceedings of the international symposium on environmental monitoring and dose estimation of residents after accident of TEPCO’s Fukushima Daiichi Nuclear Power Stations, Kyoto, JapanGoogle Scholar
  9. 9.
    Nakanishi TM, Kobayashi NI, Tanoi K (2012) Radioactive cesium deposition on rice, wheat, peach tree and soil after nuclear accident in Fukushima. J Radioanal Nucl Chem 296:985–989. doi:10.1007/s10967-012-2154-7 CrossRefGoogle Scholar
  10. 10.
    Steinhauser G, Schauer V, Shozugawa K (2013) Concentration of 90Sr at selected hot spots in Japan. PLoS ONE 8:e57760. doi:10.1371/journal.pone.0057760 CrossRefGoogle Scholar
  11. 11.
    Maekawa A, Momoshima N, Sugihara S, Tamari T (2012) Determination of radiostrontium released from Fukushima Daiichi Nuclear Power Plant through extraction chromatography and liquid scintillation counting. In: Proceedings of the international symposium on environmental monitoring and dose estimation of residents after accident of TEPCO’s Fukushima Daiichi Nuclear Power Stations, Kyoto, JapanGoogle Scholar
  12. 12.
    Kubota T, Shibahara Y, Fukutani S, Fujii T, Ohta T, Kowatari M, Mizuno S, Takamiya K, Yamana H (2014) Cherenkov counting of 90Sr and 90Y in bark and leaf samples collected around Fukushima Daiichi Nuclear Power Plant. J Radioanal Nucl Chem. doi:10.1007/s10967-014-3348-y Google Scholar
  13. 13.
    Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139. doi:10.1016/j.aca.2007.12.012 CrossRefGoogle Scholar
  14. 14.
    Vajda N, Kim CK (2010) Determination of radiostrontium isotopes: a review of analytical methodology. Appl Radiat Isot 68:2306–2326. doi:10.1016/j.apradiso.2010.05.013 CrossRefGoogle Scholar
  15. 15.
    Vajda N, Ghods-Esphahani A, Cooper E, Danesi PR (1992) Determination of radiostrontium in soil samples using a crown ether. J Radioanal Nucl Chem Art 162:307–323. doi:10.1007/bf02035392 CrossRefGoogle Scholar
  16. 16.
    Till JE, Moore RE (1988) A pathway analysis approach for determining acceptable levels of contamination of radionuclides in soil. Health Phys 55:541–548. doi:10.1097/00004032-198809000-00005 CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Sahoo SK, Hosoda M, Prasad G, Takahashi H, Sorimachi A, Ishikawa T, Tokonami S, Uchida S (2013) Naturally occurring radionuclides and rare earth elements in weathered Japanese soil samples. Acta Geophys 61:876–885. doi:10.2478/s11600-013-0131-3 CrossRefGoogle Scholar
  19. 19.
    Gaca P, Skwarzec B, Mietelski JW (2006) Geographical distribution of 90Sr contamination in Poland. Radiochim Acta 94: Doi: 10.1524/ract.2006.94.3.175
  20. 20.
    Łokas E, Mietelski JW, Kleszcz K, Tomankiewicz E (2010) A sequential procedure for determining 238Pu, 239+240Pu, 241Am, 90Sr, U and Th activities in soils and peats from Spitsbergen. Nukleonika 55:195–199Google Scholar
  21. 21.
    International Organization for Standardization (2010) Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation—Fundamentals and application. ISO 11929, GenovaGoogle Scholar
  22. 22.
    Results of the Radiation Monitoring of Soil in Fukushima Prefecture (2012) Nuclear Regulation Authority, Tokyo, Japan http://radioactivity.nsr.go.jp/en/contents/6000/5025/24/232_e_0409.pdf. Accessed 30 June 2014
  23. 23.
    Katata G, Chino M, Kobayashi T, Terada H, Ota M, Nagai H, Kajino M, Draxler R, Hort MC, Malo A, Torii T, Sanada Y (2014) Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atmos Chem Phys Discuss 14:14725–14832. doi:10.5194/acpd-14-14725-2014 CrossRefGoogle Scholar
  24. 24.
    Terada H, Katata G, Chino M, Nagai H (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J Environ Radioact 112:141–154. doi:10.1016/j.jenvrad.2012.05.023 CrossRefGoogle Scholar
  25. 25.
    Akahane K, Yonai S, Fukuda S, Miyahara N, Yasuda H, Iwaoka K, Matsumoto M, Fukumura A, Akashi M (2013) NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident. Sci Rep 3:1670. doi:10.1038/srep01670 CrossRefGoogle Scholar
  26. 26.
    International Atomic Energy Agency (2003) Method for developing arrangements for response to a nuclear or radiological emergency: updating IAEA-TECDOC-953. IAEA, ViennaGoogle Scholar
  27. 27.
    New Standard limits for Radionuclides in Foods (2011) Ministry of Health Labour and Welfare, Tokyo, Japan http://www.mhlw.go.jp/english/topics/2011eq/dl/new_standard.pdf. Accessed 30 June 2014
  28. 28.
    Kumakura I (2010). In: Government of Japan Cabinet Office (ed) What We Know From Shokuiku the Japanese Spirit -Food and Nutrition Education in Japan-, Office for Shokuiku Promotion, Cabinet office, Government of Japan, TokyoGoogle Scholar
  29. 29.
    Watanabe S (2010). In: Government of Japan Cabinet Office (ed) What We Know From Shokuiku the Japanese Spirit -Food and Nutrition Education in Japan-, Office for Shokuiku Promotion, Cabinet office, Government of Japan, TokyoGoogle Scholar
  30. 30.
    Uchida S, Tagami K, Hirai I (2007) Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides (1) upland field crops collected in Japan. J Nucl Sci Technol 44:628–640. doi:10.1080/18811248.2007.9711851 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • N. Kavasi
    • 1
  • S. K. Sahoo
    • 1
  • A. Sorimachi
    • 2
  • S. Tokonami
    • 3
  • T. Aono
    • 1
  • S. Yoshida
    • 1
  1. 1.Project for Environmental Dynamics and Radiation EffectsNational Institute of Radiological SciencesChibaJapan
  2. 2.Department of Radiation Physics and ChemistryFukushima Medical UniversityFukushimaJapan
  3. 3.Institute of Radiation Emergency MedicineHirosaki UniversityHirosakiJapan

Personalised recommendations