Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2059–2071 | Cite as

Statistical validation of the model of diffusion-convection (MDC) of 137Cs for the assessment of recent sedimentation rates in coastal systems

  • Paulo Alves de Lima Ferreira
  • Eduardo Siegle
  • Carlos Augusto França Schettini
  • Michel Michaelovitch de Mahiques
  • Rubens Cesar Lopes Figueira
Article
  • 187 Downloads

Abstract

This study aimed the validation of the model of diffusion-convection (MDC) of 137Cs for the calculation of recent sedimentation rates in 13 sedimentary cores of two Brazilian coastal systems, the Cananeia-Iguape and Santos-São Vicente estuarine systems. The MDC covers key factors responsible for 137Cs vertical migration in sediments: its diffusion to the interstitial water and the vertical convection of this water through the sediments. This study successfully validated the MDC use to determine sedimentation rates, which was statistically validated not only with 210Pbxs (unsupported 210Pb) models, widely used in oceanographic studies, but also by literature values for those regions.

Keywords

Diffusion 210Pb Cananeia-Iguape Santos-São Vicente 

Notes

Acknowledgments

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP no 2012/08634-6, 2011/50581-4 and 2009/01211-0) that financed this work.

References

  1. 1.
    Santos IR, Burnett WC, Godoy JM (2008) Radionuclides as tracers of coastal processes in Brazil: review, synthesis, and perspectives. Braz J Oceanogr 56:115–131Google Scholar
  2. 2.
    Neves PA, Ferreira PAL, Bícego MC, Figueira RCL (2014) Radioanalytical assessment of sedimentation rates in Guajará Bay (Amazon Estuary, N Brazil): a study with unsupported 210Pb and 137Cs modeling. J Radioanal Nucl Chem 299:407–414CrossRefGoogle Scholar
  3. 3.
    Figueira RCL (2000) Inventário de radionuclídeos artificiais em água do mar e sedimentos da costa sul do Brasil. PhD thesis, Instituto de Pesquisa Energéticas e Nucleares, São Paulo, BrazilGoogle Scholar
  4. 4.
    Rubio L, Linares-Rued A, Dueñas C, Fernández MC, Clavero V, Niell FX, Fernández JA (2003) Sediment accumulation rate and radiological characterisation of the sediment of Palmones River estuary (southern of Spain). J Environ Radioac 65:267–280CrossRefGoogle Scholar
  5. 5.
    Teixeira W, Fairchild TR, Toledo MCM Taioli F (2009) São Paulo: Decifrando a Terra. Companhia Editora NacionalGoogle Scholar
  6. 6.
    Appleby PG, Oldfield F (1992) Application of Lead-210 to sedimentation studies. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium. Oxford Science, New YorkGoogle Scholar
  7. 7.
    Jweda J, Baskaran M (2011) Interconnected riverine-lacustrine systems as sedimentary repositories: case study in southeast Miching using 210Pb and 137Cs-based sediment accumulation and mixing models. J Great Lakes Res 37:432–446CrossRefGoogle Scholar
  8. 8.
    Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using 210Pb and 137Cs. Geochim ct Cosmochim Acta 39:285–304CrossRefGoogle Scholar
  9. 9.
    Edgington DN, Klump JV, Robbins JA, Kusner YS, Pampura VD, Sandirimov IV (1991) Sedimentation rates, residence times and radionuclides inventories in Lake Baikal from 137Cs and 210Pb in sediment cores. Nature 350:601–604CrossRefGoogle Scholar
  10. 10.
    Nery JRC, Bonotto DM (2011) 210Pb and composition data of near-surface sediments and interstitial waters evidencing anthropogenic inputs in Amazon River mouth, Macapá, Brazil. J Environ Radioactiv 102:348–362CrossRefGoogle Scholar
  11. 11.
    Xu Z, Salem A, Chen Z, Zhang W, Chen J, Wang Z, Sun Q, Yin D (2008) 210Pb and 137Cs distribution in Burullus lagoon sediments of Nile river delta, Egypt: sedimentation rate after Aswan High Dam. Front Earth Sci China 2:434–438CrossRefGoogle Scholar
  12. 12.
    Gomes FC, Godoy JM, Godoy MLDP, Carvalho ZL, Lopes RT, Sanchez-Cabeza JA, Lacerda LD, Wasserman JC (2009) Metal concentrations, fluxes and chronologies in sediments from Sepetiba and Ribeira Bays: a comparative study. Mar Pollut Bull 59:123–133CrossRefGoogle Scholar
  13. 13.
    Lu Z, Matsumoto E (2005) Recent sedimentation rates derived from 210Pb and 137Cs methods in Ise Bay, Japan. Estuar Coast Shelf Res 65:83–93CrossRefGoogle Scholar
  14. 14.
    Mahiques MM, Burone L, Figueira RCL, Lavanére-Wanderley AAO, Capellari B, Rogacheski CE, Barroso CP, Santos LAS, Cordero LM, Cussioli MC (2009) Anthropogenic influences in a lagoonal environment: a multiproxy approach at the Valo Grande mouth, Cananéia-Iguape System (SE Brazil). Braz J Oceanogr 57:325–337CrossRefGoogle Scholar
  15. 15.
    Ribeiro AP, Figueira RCL, Martins CC, Silva CRA, França EJ, Bícego MC, Mahiques MM, Montone RC (2011) Arsenic and trace metal contents in sediment profiles from the Admiralty Bay, King George Island, Antarctica. Mar Pollut Bull 62:192–196CrossRefGoogle Scholar
  16. 16.
    IAEA: International Atomic Energy Agency (1989) Measurements of radionuclides in food and the environment. Technical reports series n. 295. IAEA, ViennaGoogle Scholar
  17. 17.
    Ligero RA, Barrera M, Casas-Ruiz M (2004) Levels of 137Cs in muddy sediments of the seabed of the Bay of Cádiz, Spain. Part I. Vertical and spatial distribution of activities. J Environ Radioac 80:75–86CrossRefGoogle Scholar
  18. 18.
    Figueira RCL, Cunha IIL (1993) A contaminação dos oceanos por radionuclídeos antropogênicos. Quim Nova 21(1):73–77CrossRefGoogle Scholar
  19. 19.
    Sanders CJ, Santos IR, Patchineelam SR, Schaeffer C, Silva-Filho EV (2010) Recent 137Cs deposition in sediments of Admiralty Bay, Antarctica. J Environ Radioac 101:421–424CrossRefGoogle Scholar
  20. 20.
    Gonçalves C, Figueira RCL, Sartoretto JR, Salaroli AB, Ribeiro AP, Ferreira PAL, Mahiques MM (2013) Reconstruction of historical trends in potentially toxic elements from sediment cores collected in Bertioga Channel Southeastern Brazil. Braz J Oceanogr 61(2):149–160Google Scholar
  21. 21.
    Saito RT, Figueira RCL, Tessler MG, Cunha IIL (2001) 210Pb and 137Cs geochronologies in the Cananéia-Iguape estuary (São Paulo, Brazil). J Radioanal Nucl Chem 249:257–261CrossRefGoogle Scholar
  22. 22.
    Sousa SHM, Amaral PGC, Martins V, Figueira RCL, Siegle E, Ferreira PAL, Silva IS, Shinagawa E, Salaroli A, Schettini CAF, Santa-Cruz J, Mahiques MM (2012) Environmental evolution of the Caravelas Estuary (Northeastern Brazilian coast, 17°S, 39°W) based on multiple proxies in a sedimentary record of the last century. J Coast Res 30(3):474–486Google Scholar
  23. 23.
    Ferrand E, Eyrolle F, Radakovitch O, Provansal M, Dufour S, Vella C, Raccasi G, Guirriaran R (2012) Historical levels of heavy metals and artificial radionuclides reconstructed from overbank sediment records in lower Rhône River (South-East France). Geochim Cosmochim Ac 82:163–182CrossRefGoogle Scholar
  24. 24.
    Hai X, Li A, Liangcheng T, Zhisheng A (2006) Geochronology of a surface core in the northern basin of Lake Qinghai: evidence from 210Pb and 137Cs radionuclides. Chin J Geochem 25(4):301–306CrossRefGoogle Scholar
  25. 25.
    Ajayi R, Raji AT (2010) Evaluation of the 137Cs activity-depth profiles by the diffusion-convection model. Intern J Phys Sci 5(2):154–157Google Scholar
  26. 26.
    Ligero RA, Casas-Ruiz M, Barrera M, Barbero L, Meléndez MJ (2010) An alternative radiometric method for calculating sedimentation rates: application to an intertidal region (SW Spain). Appl Radiat Isotopes 68:1602–1609CrossRefGoogle Scholar
  27. 27.
    Ferreira PAL, Ribeiro AP, Nascimento MG, Martins CC, Mahiques MM, Montone RC, Figueira RCL (2013) 137Cs in marine sediments of Admiralty Bay, King George Island, Antarctica. Sci Tot Environ 443:505–510CrossRefGoogle Scholar
  28. 28.
    Wanderley CVA, Godoy JM, Godoy MLDP, Rezende CE, Lacerda LD, Moreira I, Carvalho ZL (2014) Evaluating sedimentation rates in the estuary and shelf region of the Paraiba do Sul River Southeastern Brazil. J Braz Chem Soc 25(1):50–64Google Scholar
  29. 29.
    Suguio K, Martin L (1978) Formações quaternárias marinhas do litoral paulista e sul-fluminense. In: Special publication of the International Symposium on Coastal Evolution in the Quaternary. São Paulo: Sociedade Brasileira de GeologiaGoogle Scholar
  30. 30.
    Tessler MG (1982) Sedimentação atual na região lagunar de Cananéia-Iguape, Estado de São Paulo. MSc dissertation, Universidade de São Paulo, São Paulo, BrazilGoogle Scholar
  31. 31.
    Fúlfaro VJ, Ponçano WL (1976) Sedimentação atual do estuário e baía de Santos: um modelo geológico aplicado a projetos de expansão da zona portuária. In: Anais do Congresso Brasileiro de Geologia de Engenharia. Rio de Janeiro: Associação Brasileira de Geologia de EngenhariaGoogle Scholar
  32. 32.
    Mahiques M, Figueira RCL, Salaroli AB, Alves DPV, Gonçalves C (2013) 150 years of anthropogenic metal input in a Biosphere Reserve: the case study of the Cananéia-Iguape coastal system, Southeastern Brazil. Environ Earth Sci 68(4):1073–1087CrossRefGoogle Scholar
  33. 33.
    EPA: Environmental Protection Agency (2001) Requirements for quality assurance project plans. EPA report QA/R-5. New York: Office of Environmental InformationGoogle Scholar
  34. 34.
    Figueira RCL, Tessler MG, Mahiques MM, Cunha IIL (2006) Distribution of 137Cs, 238Pu and 239+240Pu in sediments of the southeastern Brazilian shelf-SW Atlantic margin. Sci Tot Environ 357:146–159CrossRefGoogle Scholar
  35. 35.
    Ligero RA, Barrera M, Casas-Ruiz M (2005) Levels of 137Cs in muddy sediments on the seabed in the Bay of Cádiz (Spain). Part II. Model of vertical migration of 137Cs. J Environ Radioactiv 80:87–103CrossRefGoogle Scholar
  36. 36.
    Quorteroni A, Sacco R, Saleri F (2006) Numerical mathematics. Springer, BerlinGoogle Scholar
  37. 37.
    Kress R (1998) Numerical analysis. Springer, BerlinCrossRefGoogle Scholar
  38. 38.
    Clifton RJ, Watson PG, Davey JT, Frickers PE (1995) A study of processes affecting the uptake of contaminants by intertidal sediments, using the radioactive tracers: 7Be, 137Cs and unsupported 210Pb. Estuar Coast Shelf S 41:459–474CrossRefGoogle Scholar
  39. 39.
    Krishnaswani S, Lal D (1978) Radionuclide limnology. In: Lerman A (ed) Lakes: chemistry, geology and physics. Springer, New YorkGoogle Scholar
  40. 40.
    Shukla BS (1996) Transport of pesticides from watershed by volatilization, infiltration and runoff (models and applications). Environmental Research & Publications, HamiltonGoogle Scholar
  41. 41.
    Klaminder J, Appleby P, Crook P, Reinberg I (2012) Post-deposition diffusion of 137Cs in lake sediment: Implications for radiocesium dating. Sedimentology 59:2259–2267CrossRefGoogle Scholar
  42. 42.
    Johnson-Pyrtle A, Scott MR, Laing TE, Smol JP (2000) 137Cs distribution and geochemistry of Lena River (Siberia) drainage basin lake sediments. Sc Tot Environ 255:145–159CrossRefGoogle Scholar
  43. 43.
    Sanders CJ, Santos IR, Silva Filho EV, Patchineelam SR (2006) Mercury flux to estuarine sediments, derived from 210Pb and 137Cs geochronologies (Guaratuiba Bay, Brazil). Mar Pollut Bull 52:1085–1089CrossRefGoogle Scholar
  44. 44.
    Glass GV, Peckham PD, Sanders JR (1972) Consequences of failure to meet assumptions underlying fixed effects analysis of variance and covariance. Rev Educ Res 42:237–288CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Paulo Alves de Lima Ferreira
    • 1
  • Eduardo Siegle
    • 1
  • Carlos Augusto França Schettini
    • 2
  • Michel Michaelovitch de Mahiques
    • 1
  • Rubens Cesar Lopes Figueira
    • 1
  1. 1.Instituto OceanográficoUniversidade de São Paulo (IO-USP)São PauloBrazil
  2. 2.Centro de Tecnologia e GeociênciasUniversidade Federal de Pernambuco (CTG-UFPE)RecifeBrazil

Personalised recommendations