Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 2, pp 1277–1281 | Cite as

Muon capture probability of carbon and oxygen for CO, CO2, and COS under low-pressure gas conditions

  • G. Yoshida
  • K. Ninomiya
  • T. U. Ito
  • W. Higemoto
  • T. Nagatomo
  • P. Strasser
  • N. Kawamura
  • K. Shimomura
  • Y. Miyake
  • T. Miura
  • K. M. Kubo
  • A. Shinohara
Article

Abstract

When a negatively charged muon is stopped in a substance, it is captured by an atom of the substance, and the muonic atom is formed. The muon capture process is significantly affected by the chemical environment of the atom and factors such as molecular structure (chemical effect). In this study, we performed muon irradiation for low-pressure CO, CO2, and COS molecules and measured the muonic X-rays emitted immediately after muon capture by an atom. In this paper, we quantitatively discuss the muon capture probability of each type of atom using the LMM model.

Keywords

Negative muon Muonic atom Muon capture Muonic X-ray EGS-5 code 

References

  1. 1.
    Hughes VW, Wu CS (1977) Muon Physics. Academic Press, WalthamGoogle Scholar
  2. 2.
    Schneuwly H, Boschung M, Kaeser K, Piller G, Rüetschi A, Schaller LA, Schellenberg L (1983) Phys Rev A27:950–960CrossRefGoogle Scholar
  3. 3.
    Fermi E, Teller E (1947) Phys Rev 72:399–408CrossRefGoogle Scholar
  4. 4.
    Petrukhin VJ, Suvorov VM (1976) ZhETF 70:1145–1151Google Scholar
  5. 5.
    Daniel H (1975) Phys Rev Lett 35:1649–1651CrossRefGoogle Scholar
  6. 6.
    Bacher R, Gotta D, Simons LM (1985) Phys Rev Lett 54:2087–2090CrossRefGoogle Scholar
  7. 7.
    Ninomiya K, Ito TU, Higemoto W, Kita M, Shinohara A, Nagatomo T, Kubo KM, Strasser P, Kawamura N, Shimomura K, Miyake Y, Miura T (2011) J Korean Phys Soc 59:2917–2920CrossRefGoogle Scholar
  8. 8.
    Kadono R, Miyake Y (2012) MUSE, the goddess of muons, and her future. Rep Prog Phys. doi:10.1088/0034-4885/75/2/026302 Google Scholar
  9. 9.
    Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, Nelson WR (2005) SLAC-R-730, The EGS-5 code system. Stanford Linear Accelerator Center, StanfordCrossRefGoogle Scholar
  10. 10.
    Knight JD, Orth CJ, Schillaci ME, Naumann RA, Hartmann FJ, Schneuwly H (1983) Phys Rev A27:2936–2945CrossRefGoogle Scholar
  11. 11.
    Kubo MK, Sakai Y, Tominaga T, Nagamine K (1989) Radiochim Acta 47:77–78Google Scholar
  12. 12.
    Suzuki T, Mikula RJ, Garner DM, Fleming DG, Measday DF (1980) Phys Lett 95B:202–206CrossRefGoogle Scholar
  13. 13.
    Schneuwly H, Pokrovsky VN, Ponomarev LI (1978) Nucl Phys A312:419–426CrossRefGoogle Scholar
  14. 14.
    Imanishi N, Miyamoto S, Takeuchi Y, Shinohara A, Kaji H, Yoshimura Y (1988) Phys Rev A37:43–48CrossRefGoogle Scholar
  15. 15.
    Huheey JE, Keiter EA, Keiter RL, Medhi OK (1993) Inorganic chemistry, principles of structure and reactivity, 4th edn. Harper Collins, New YorkGoogle Scholar
  16. 16.
    Jean Y, Volatron F (1993) An introduction to molecular orbitals. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • G. Yoshida
    • 1
  • K. Ninomiya
    • 1
  • T. U. Ito
    • 2
  • W. Higemoto
    • 2
  • T. Nagatomo
    • 3
  • P. Strasser
    • 3
  • N. Kawamura
    • 3
  • K. Shimomura
    • 3
  • Y. Miyake
    • 3
  • T. Miura
    • 4
  • K. M. Kubo
    • 5
  • A. Shinohara
    • 1
  1. 1.Graduate School of ScienceOsaka UniversityToyonakaJapan
  2. 2.Advanced Science Research CenterJapan Atomic Energy AgencyNakaJapan
  3. 3.Muon Science LaboratoryHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
  4. 4.Radiation Science CenterHigh Energy Accelerator Research Organization (KEK)IbarakiJapan
  5. 5.Division of Natural SciencesInternational Christian UniversityTokyoJapan

Personalised recommendations