Separation of curium from americium using composite sorbents and complexing agent solutions

  • Kamila Št’astnáEmail author
  • Jan John
  • Ferdinand Šebesta
  • Martin Vlk


The EXAm and the AmSel liquid–liquid extraction processes have been used as bases for the development of chromatographic systems for separation of curium(III) from americium(III). The liquid organic phases were replaced by composite sorbents with PAN binding matrix and complexing agent in nitric acid solutions were employed as aqueous phases. The influence of complexing agent and nitric acid concentrations on weight distribution coefficients and separation factor and the kinetics of the actinide uptake were determined in batch experiments with trace amounts of 241Am and 244Cm. The efficiency of Cm(III) separation from Am(III) was evaluated in column experiment.


Americium Curium Separation Composite sorbent Complexing agent 



This research has been supported by the Grant Agency of the Czech Technical University in Prague, grants No. SGS11/071/OHK4/1T/14 and SGS12/199/OHK4/3T/14, and the Ministry of the Interior of the Czech Republic, grant No. VG20132015132.


  1. 1.
    Seaborg GT, James RA, Morgan LO (1949) The New Element Americium (Atomic Number 95), THIN PPR 14 B The Transuranium Elements: Paper No. 22.1, McGraw-Hill Book, New YorkGoogle Scholar
  2. 2.
    Glass RA (1955) J Am Chem Soc 77:807–809CrossRefGoogle Scholar
  3. 3.
    Choppin GR, Harvey BG, Thompson SG (1956) J Inorg Nucl Chem 2:66–68CrossRefGoogle Scholar
  4. 4.
    Smith HL, Hoffman DC (1956) J Inorg Nucl Chem 3:243–247CrossRefGoogle Scholar
  5. 5.
    Thompson GH (1972) Ion Exch Membr 1:87–89Google Scholar
  6. 6.
    Billon A (1979) J Radioanal Chem 51:297–305CrossRefGoogle Scholar
  7. 7.
    Bigelow JE, Benker DE, Chattin FR, King LJ, Knauer JB, Ross RG, Stacy RG, Wiggins JT (1984) Gram-scale separation of curium from americium using ammonium α–hydroxyisobutyrate in high–pressure cation columns. Int Symp Actin Lanthan Sep, Honolulu, pp 16–22Google Scholar
  8. 8.
    Vobecký M (1986) J Radioanal Nucl Chem Letters 105:335–340CrossRefGoogle Scholar
  9. 9.
    Vobecký M (1989) J Radioanal Nucl Chem Letters 135:165–169CrossRefGoogle Scholar
  10. 10.
    Chartier F, Aubert M, Pilier M (1999) Fresenius J Anal Chem 364:320–327CrossRefGoogle Scholar
  11. 11.
    Goutelard F, Caussignac C, Brennetot R, Stadekmann G, Gautier G (2009) J Radioanal Nucl Chem 282:669–675CrossRefGoogle Scholar
  12. 12.
    Fuger J (1958) J Inorg Nucl Chem 5:332–338CrossRefGoogle Scholar
  13. 13.
    Hale WH, Lowe JT (1969) Inorg Nucl Chem Letters 4:363–368CrossRefGoogle Scholar
  14. 14.
    Adar S, Sjoblom RK, Barnes RF, Fiels PR (1963) J Inorg Nucl Chem 25:447–452CrossRefGoogle Scholar
  15. 15.
    Kraak W, van der Heijden WA (1966) J Inorg Nucl Chem 28:221–224CrossRefGoogle Scholar
  16. 16.
    Morrow RJ (1966) Talanta 13:1265–1274CrossRefGoogle Scholar
  17. 17.
    Lebedev IA, Myasoedov BF, Guseva LI (1974) J Radioanal Chem 21:259–266CrossRefGoogle Scholar
  18. 18.
    Osaka M, Koyama S, Mitsugashira T (2004) J Nucl Sci Technol 41:907–914CrossRefGoogle Scholar
  19. 19.
    Suzuki T, Otake K, Sato M, Ikeda A, Aida M, Fujii Y, Hara M, Mitsugashira T, Ozawa M (2007) J Radioanal Nucl Chem 272:257–262CrossRefGoogle Scholar
  20. 20.
    Koyama S, Ozawa M, Suzuki T, Fujii Y (2006) J Nucl Sci Technol 43:681–689CrossRefGoogle Scholar
  21. 21.
    Nogami M, Fujii Y, Sugo T (1996) J Radioanal Nucl Chem 203:109–117CrossRefGoogle Scholar
  22. 22.
    Stephanou SE, Penneman RA (1952) J Am Chem Soc 74:3701–3702CrossRefGoogle Scholar
  23. 23.
    Moore FL (1963) Anal Chem 35:715–719CrossRefGoogle Scholar
  24. 24.
    Coleman JS, Keenan TK, Jones LH, Carnall WT, Penneman RA (1963) Inorg Chem 2:58–61CrossRefGoogle Scholar
  25. 25.
    Shehee T, Martin LR, Zalupski PR, Nash KL (2010) Separ Sci Technol 45:1743–1752CrossRefGoogle Scholar
  26. 26.
    Horwitz EP, Bloomquist CAA, Harvey HW, Cohen D, Basile LJ (1965) ANL-6998Google Scholar
  27. 27.
    Moore FL (1966) Anal Chem 38:510–512CrossRefGoogle Scholar
  28. 28.
    Appelman EH, Diamond H, Horwitz EP, Sullivan JC (1991) Radiochim Acta 55:61–64Google Scholar
  29. 29.
    Donnet L, Adnet JM, Faure N, Bros P, Brossard P, Josso F, Development of the SESAME process. SFEN, ENS 5th International Conference on Recycling, Conditioning and Disposal, Nice, 25–28 October 1998Google Scholar
  30. 30.
    Martin LR, Mincher BJ, Schmitt NC (2009) J Radioanal Nucl Chem 282:523–526CrossRefGoogle Scholar
  31. 31.
    Mincher BJ, Martin LR, Schmitt NC (2008) Inorg Chem 47:6984–6989CrossRefGoogle Scholar
  32. 32.
    Stokely JR, Moore FL (1967) Anal Chem 39:994–997CrossRefGoogle Scholar
  33. 33.
    Fardy JJ, Buchanan JM (1976) J Inorg Nucl Chem 38:149–154CrossRefGoogle Scholar
  34. 34.
    Hulet EK (1964) J Inorg Nucl Chem 26:1721–1727CrossRefGoogle Scholar
  35. 35.
    Moore FL (1968) Anal Chem 40:2130–3133CrossRefGoogle Scholar
  36. 36.
    Runde WH, Mincher BJ (2011) Chem Rev 111:5723–5741CrossRefGoogle Scholar
  37. 37.
    Horwitz EP, Bloomquist CAA, Sauro LJ, Henderson DJ (1966) J Inorg Nucl Chem 28:2313–2324CrossRefGoogle Scholar
  38. 38.
    Mason GW, Bollmeier AF, Peppard DF (1970) J Inorg Nucl Chem 32:1011–1022CrossRefGoogle Scholar
  39. 39.
    Horwitz EP, Orlandini KA, Bloomquist CAA (1966) Inorg Nucl Chem Letters 2:87–91CrossRefGoogle Scholar
  40. 40.
    Modolo G, Kluxen P, Geist A (2010) Radiochim Acta 98:193–201CrossRefGoogle Scholar
  41. 41.
    Kurosaki H, Clark SB (2011) Radiochim Acta 99:65–69CrossRefGoogle Scholar
  42. 42.
    Maryutina TA, Litvina MN, Malikov DA, Spivakov BY, Myasoedov BF, Lecomte M, Hill C, Madic C (2004) Radiochemistry 46:596–602CrossRefGoogle Scholar
  43. 43.
    Myasoedov BF, Maryutina TA, Litvina MN, Malikov DA, Kulyako YM, Spivakov BY, Hill C, Adnet J-M, Lecomte M, Madic C (2005) Radiochim Acta 93:9–15CrossRefGoogle Scholar
  44. 44.
    Warin D, Recent progress in Advanced Actinide Recycling Processes. OECD NEA 11th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, San Francisco, 1–4 November 2010Google Scholar
  45. 45.
    Charbonnel M-C, Berthon C, Berthon L, Boubals N, Burdet F, Duchesne M-T, Guilbaud P, Mabille N, Petit S, Zorz N (2012) Procedia Chem 7:20–26CrossRefGoogle Scholar
  46. 46.
    Wagner C, Müllich U, Panak PJ, Geist A, AmSel, a new system for extracting only americium from PUREX raffinate. Sustainable Nuclear Energy Conference, Manchester, 9–11 April 2014Google Scholar
  47. 47.
    Šebesta F (1997) J Radioanal Nucl Chem 220:77–88CrossRefGoogle Scholar
  48. 48.
    Mann NR, Todd TA, Tranter TJ, Šebesta F (2002) J Radioanal Nucl Chem 254:41–45CrossRefGoogle Scholar
  49. 49.
    Tranter TJ, Mann NR, Todd TA, Šebesta F (2003) Czech J Phys 53:A589–A594CrossRefGoogle Scholar
  50. 50.
    Kameník J, Šebesta F (2006) Czech J Phys 56:D493–D500CrossRefGoogle Scholar
  51. 51.
    Šul’aková J, John J, Šebesta F (2006) Czech J Phys 56:D589–D597CrossRefGoogle Scholar
  52. 52.
    Šebesta F, Kameník J (2010) J Radioanal Nucl Chem 283:845–849CrossRefGoogle Scholar
  53. 53.
    Horwitz EP, McAlister DR, Bond AH, Barrans RE (2005) Solvent Extr Ion Exch 23:319–344CrossRefGoogle Scholar
  54. 54.
    Št’astná K, Fiala V, John J (2010) J Radioanal Nucl Chem 268:735–739Google Scholar
  55. 55.
    Van Hecke K, Modolo G (2004) J Radioanal Nucl Chem 261:269–275CrossRefGoogle Scholar
  56. 56.
    Lewis FW, Harwood LM, Hudson MJ, Drew GB, Wilden A, Sypula M, Modolo G, Vu T-H, Simonin J-P, Vidick G, Bouslimani N, Desreux JF (2012) Procedia Chem 7:231–238CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Kamila Št’astná
    • 1
    Email author
  • Jan John
    • 1
  • Ferdinand Šebesta
    • 1
  • Martin Vlk
    • 1
  1. 1.Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 1Czech Republic

Personalised recommendations