Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 2, pp 1317–1320 | Cite as

Development of a new continuous dissolution apparatus with a hydrophobic membrane for superheavy element chemistry

  • K. Ooe
  • M. F. Attallah
  • M. Asai
  • N. Goto
  • N. S. Gupta
  • H. Haba
  • M. Huang
  • J. Kanaya
  • Y. Kaneya
  • Y. Kasamatsu
  • Y. Kitatsuji
  • Y. Kitayama
  • K. Koga
  • Y. Komori
  • T. Koyama
  • J. V. Kratz
  • H. V. Lerum
  • S. Miyashita
  • Y. Oshimi
  • V. Pershina
  • D. Sato
  • T. K. Sato
  • Y. Shigekawa
  • A. Shinohara
  • A. Tanaka
  • A. Toyoshima
  • K. Tsukada
  • S. Tsuto
  • T. Yokokita
  • A. Yokoyama
  • J. P. Omtvedt
  • Y. Nagame
  • M. Schädel
Article

Abstract

A new technique for continuous dissolution of nuclear reaction products transported by a gas-jet system was developed for superheavy element (SHE) chemistry. In this technique, a hydrophobic membrane is utilized to separate an aqueous phase from the gas phase. With this technique, the dissolution efficiencies of short-lived radionuclides of 91m,93mMo and 176W were measured. Yields of more than 80 % were observed for short-lived radionuclides at aqueous-phase flow rates of 0.1–0.4 mL/s. The gas flow-rate had no influence on the dissolution efficiency within the studied flow range of 1.0–2.0 L/min. These results show that this technique is applicable for on-line chemical studies of SHEs in the liquid phase.

Keywords

Molybdenum Tungsten Gas-jet transport Continuous dissolution Hydrophobic membrane 

References

  1. 1.
    Schädel M (2006) Angew Chem Int Ed 45:368–401CrossRefGoogle Scholar
  2. 2.
    Kratz JV (2011) In: Vertes A, Nagy S, Klencsar Z, Lovas RG, Rösch F (eds) Handbook of Nuclear Chemistry, 2nd edition, Vol 2, Chapter 20, 925, Springer Science + Business B.V, VerlagGoogle Scholar
  3. 3.
    Schädel M (2012) Radiochim Acta 100:579–604CrossRefGoogle Scholar
  4. 4.
    Omtvedt JP, Alstad J, Bjørnstad T, Düllmann ChE, Gregorich KE, Hoffman DC, Nitsche H, Opel K, Polakova D, Samadani F, Schulz F, Skarnemark G, Stavsetra L, Sudowe R, Zheng L (2007) Eur Phys J D 45:91–97CrossRefGoogle Scholar
  5. 5.
    Omtvedt JP, Alstad J, Breivik H, Dyve JE, Eberhardt K, Folden CM III, Ginter T, Gregorich KE, Hult EA, Johansson M, Kirbach UW, Lee DM, Mendel M, Nähler A, Ninov V, Omtvedt LA, Patin JB, Skarnemark G, Stavsetra L, Sudowe R, Wiehl N, Wierczinski B, Wilk PA, Zielinski PM, Kratz JV, Trautmann N, Nitsche H, Hoffman DC (2002) J Nucl Radiochem Sci 3:121–124CrossRefGoogle Scholar
  6. 6.
    Toyoshima A, Kasamatsu Y, Kitatsuji Y, Tsukada K, Haba H, Shinohara A, Nagame Y (2008) Radiochim Acta 96:323–326Google Scholar
  7. 7.
    Haba H, Kaji D, Morimoto K, Morita K, Ozeki K, Sakai R, Sumita T, Yoneda A, Kasamatsu K, Komori Y, Shinohara A, Kikunaga H, Kudo H, Nishio K, Ooe K, Sato N, Tsukada K (2012) Phys Rev C 85:024611-1–024611-11CrossRefGoogle Scholar
  8. 8.
    Nilsen J, (2009) MSc thesis “Investigations into new degasser technology for SISAK”, Department of Chemistry, University of Oslo, OsloGoogle Scholar
  9. 9.
    Attallah MF et al, in preparation for publishingGoogle Scholar
  10. 10.
    Hild D, Eberhardt K, Even J, Kratz JV, Wiehl N, Löb P, Werner B, Hofmann C (2013) MicroSISAK: Continuous liquid–liquid extractions of radionuclides at ≥0.2 mL/min Radiochim Acta 101:681–689 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • K. Ooe
    • 1
    • 2
  • M. F. Attallah
    • 3
  • M. Asai
    • 1
  • N. Goto
    • 2
  • N. S. Gupta
    • 3
  • H. Haba
    • 4
  • M. Huang
    • 4
  • J. Kanaya
    • 4
  • Y. Kaneya
    • 1
  • Y. Kasamatsu
    • 5
  • Y. Kitatsuji
    • 1
  • Y. Kitayama
    • 6
  • K. Koga
    • 7
  • Y. Komori
    • 5
  • T. Koyama
    • 2
  • J. V. Kratz
    • 8
  • H. V. Lerum
    • 3
  • S. Miyashita
    • 1
    • 7
  • Y. Oshimi
    • 2
  • V. Pershina
    • 9
  • D. Sato
    • 2
  • T. K. Sato
    • 1
  • Y. Shigekawa
    • 5
  • A. Shinohara
    • 5
  • A. Tanaka
    • 2
  • A. Toyoshima
    • 1
  • K. Tsukada
    • 1
  • S. Tsuto
    • 2
  • T. Yokokita
    • 5
  • A. Yokoyama
    • 6
  • J. P. Omtvedt
    • 3
  • Y. Nagame
    • 1
  • M. Schädel
    • 1
    • 9
  1. 1.Advanced Science Research CenterJapan Atomic Energy AgencyTokaiJapan
  2. 2.Institute of Science and TechnologyNiigata UniversityNiigataJapan
  3. 3.Department of ChemistryUniversity of OsloOsloNorway
  4. 4.Nishina Center for Accelerator-Based ScienceRIKENWakoJapan
  5. 5.Graduate School of ScienceOsaka UniversityToyonakaJapan
  6. 6.Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  7. 7.Department of Chemistry, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  8. 8.Institut für KernchemieUniversität MainzMainzGermany
  9. 9.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany

Personalised recommendations