Dissolution of [226Ra]BaSO4 as part of a method for recovery of 226Ra from aged radium sources

  • Ján KozempelEmail author
  • Martin Vlk
  • Markéta Floriánová
  • Barbora Drtinová
  • Mojmír Němec


Growing interest in the research of radium chemistry, its use as target material in nuclear reaction studies and preparation of calibration sources leads to higher demand for 226Ra in readily available soluble form. Aged radium needle sources containing very insoluble radium-barium sulphate may serve as source material of 226Ra and its decay products (e.g. 210Pb). We describe here several methods for [226Ra]BaSO4 dissolution including microwave assisted reactions and compare their efficiency in model experiments.


Radium Barium Dissolution Microwave Sulphate conversion 



Authors are grateful to the Ministry of Education Youth and Sports of the Czech Republic for the support of this project (grant No.: LK21310).


  1. 1.
    Vobecký M (1999) Contribution of the industrial chemical processing of pitchblende in Jáchymov to the first isolation of radium. Czech J Phys 49(S1):35–40CrossRefGoogle Scholar
  2. 2.
    Anonymous (undated) description of 226Ra sources preparation. ÚVVVR Prague, Czech RepublicGoogle Scholar
  3. 3.
    E.g. certificate No.:189-79-0-221, source No.: 27, ÚVVVR Prague, 28.8.1979 (originally Prague, 15. 6. 1931)Google Scholar
  4. 4.
    Šebesta F (September 2013) personal communicationGoogle Scholar
  5. 5.
    Chu SYF, Ekström LP and Firestone RB (2009) The Lund/LBNL Nuclear Data Search, Version 2.0. Accessed 25 March 2014
  6. 6.
    Curie P, Curie M, Bémont G (1898) Sur une nouvelle substance fortement radio-active, contenue dans la pechblende. Comptes Rendus 1215-1217Google Scholar
  7. 7.
    Patera A (1854) Ueber fabrikmässige Darstellung von Urangelb. J Prakt Chem 397-398Google Scholar
  8. 8.
    Vdovenko VM, Dubasov JuV (1973) Analitičeskaja Chimija Radija. In: Russian. Nauka, Leningrad, SSSRGoogle Scholar
  9. 9.
    Kuznetsov RA, Butkalyuk PS, Butkalyuk IL (2013) Radiochemistry 55(1):112–115CrossRefGoogle Scholar
  10. 10.
    Fresenius R, Jander G (1940) Handbuch der Analytischen Chemie”, Teil 111, Band IIa. Springer, BerlinGoogle Scholar
  11. 11.
    Bürger K (1941) New simple micromethod for determination of sulphur, chlorine, bromine, iodine in organic and inorganic materials. Angew Chem 54:479–481CrossRefGoogle Scholar
  12. 12.
    Bürger K (1942) Microdetermination of sulphur and halogens by fusion with K. Die Chemie 55:245–247Google Scholar
  13. 13.
    Rancke-Madsen E (1949) Determination of sulphate by reduction with stannous chloride. Acta Chem Scand 3:773–777CrossRefGoogle Scholar
  14. 14.
    Rancke-Madsen H, Theilgaard-Madsen H (1952) Determination of sulphate by reduction with stannous chloride II. Acta Chem Scand 6:305–306CrossRefGoogle Scholar
  15. 15.
    Tyson JF, Palmer CD (2009) Simultaneous determination of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite. Anal Chim Acta 652:251–258CrossRefGoogle Scholar
  16. 16.
    Vohlídal J, Julák A, Štulík K (1999) Chemical and analytical tables in Czech. Grada, Prague, Czech RepublicGoogle Scholar
  17. 17.
    Kirby HW, Salutsky ML (1964) The radiochemistry of Radium, Nuclear Science Series, Report NAS-NS-3057. National Academy of Sciences, USAGoogle Scholar
  18. 18.
    Shigeru O, Doi J (1991) Organic sulphur chemistry: structure and mechanism, vol 1. CRC Press, USAGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Ján Kozempel
    • 1
    Email author
  • Martin Vlk
    • 1
  • Markéta Floriánová
    • 1
  • Barbora Drtinová
    • 1
  • Mojmír Němec
    • 1
  1. 1.Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear ChemistryCzech Technical University in PraguePragueCzech Republic

Personalised recommendations