Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 1, pp 1005–1007 | Cite as

Major, minor and trace element mass fractions determined using ED-XRF, WD-XRF and INAA for three synthetic mullite reference materials (NCS HC 14807; NCS HC 14808; and NCS HC 14809) and five stream sediment reference materials (GBW 07302; GBW 07310; GBW 07311; GBW 07312; and GBW 07405)

  • Alice M. W. Hunt
  • Douglas Dvoracek
  • Michael D. Glascock
  • Robert J. Speakman


This paper is the third in a series of characterization studies conducted by the Center for Applied Isotope Studies, University of Georgia, and the Research Reactor Center, University of Missouri–Columbia, on clay and sediment reference materials. Major, minor and trace element mass fractions were determined using wavelength dispersive and energy dispersive X-ray fluorescence and instrumental neutron activation analysis for three synthetic mullite certified reference materials (NCS HC 14807–14809) distributed by the China National Analysis Center for Iron And Steel and five geological stream sediment certified reference materials (GBW 07302, 07310–07312, 07405) distributed by the National Research Center for Certified Reference Materials in China. We report mass fractions for 10 major elements as oxides and the following minor and trace elements: As, Ba, Ce, Co, Cr, Cs, Cu, Eu, Hf, La, Lu, Nb, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sn, Sr, Ta, Tb, Th, U, V, Y, Yb, Zn, and Zr.


Certified reference materials Clay Mullite Stream sediment Trace elements XRF INAA NSC HC 14807–14809 GBW 07302 GBW 07310–07312 GBW 07405 

Supplementary material

10967_2014_3387_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 29 kb)
10967_2014_3387_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 22 kb)
10967_2014_3387_MOESM3_ESM.docx (27 kb)
Supplementary material 3 (DOCX 27 kb)
10967_2014_3387_MOESM4_ESM.docx (28 kb)
Supplementary material 4 (DOCX 28 kb)
10967_2014_3387_MOESM5_ESM.docx (26 kb)
Supplementary material 5 (DOCX 26 kb)
10967_2014_3387_MOESM6_ESM.docx (27 kb)
Supplementary material 6 (DOCX 26 kb)
10967_2014_3387_MOESM7_ESM.docx (38 kb)
Supplementary material 7 (DOCX 37 kb)


  1. 1.
    Hunt AMW, Dvoracek D, Glascock M, Speakman RJ (2014) J Radioanal Nucl Chem 1096. doi: 10.1007/s10967-014-3266z Google Scholar
  2. 2.
    Norrish K, Hutton JT (1969) Geochim Cosmochim Acta 33:431–453CrossRefGoogle Scholar
  3. 3.
    Ingham MN, Starbuck PH, British Geological Survey Analytical Geochemistry Research Group (1995) Investigation of the suitability of Elvacite, used as a liquid binder, for analysis of pressed powder samples by X-ray fluorescence spectrometry. British Geological Survey, Analytical Geochemistry Series, Technical Report WI/94/5Google Scholar
  4. 4.
    Mee JS, Siems D, Taggart J (1996) In: Arbogast B. F (ed) Analytical methods manual for the Mineral Resource Surveys Program US. Geological Survey Open-file Report 96-525Google Scholar
  5. 5.
    Taggart J, Siems D (2002) Major element analysis by wavelength dispersive X-ray fluorescence spectrometry US. Geological Survey Open-file Report 02-223Google Scholar
  6. 6.
    Shackley MS (2011) In: Shackley MS (ed) X-Ray fluorescence spectrometry (XRF) in Geoarchaeology. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Glascock M, Speakman R, Neff H (2007) Archaeometry 49:343–357CrossRefGoogle Scholar
  8. 8.
    Glascock M (2006) Tables for neutron activation analysis. University of Missouri, ColumbiaGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Alice M. W. Hunt
    • 1
  • Douglas Dvoracek
    • 1
  • Michael D. Glascock
    • 2
  • Robert J. Speakman
    • 1
  1. 1.Center for Applied Isotope StudiesUniversity of GeorgiaAthensUSA
  2. 2.Research Reactor CenterUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations