Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 1, pp 277–286 | Cite as

Preparation and characterization of adsorbent based on carbon for pertechnetate adsorption

  • P. Rajec
  • M. Galamboš
  • M. Daňo
  • O. Rosskopfová
  • M. Čaplovičová
  • P. Hudec
  • M. Horňáček
  • I. Novák
  • D. Berek
  • Ľ. Čaplovič


Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. Five carbon materials were prepared by soaking of fibrous cellulose with different solutions containing inorganic compounds suitable for creation of micropores. After drying, materials were carbonized at 500–800 °C, characterized by BET, acid–base titration, HRTEM and SAXRD methods and tested on their adsorption capabilities for pertechnetate. Adsorption kinetics of the pertechnetate ion on these materials is relatively fast and depends on pH. For some sorbents, a 99 %-adsorption within 1 min was found. One of the variables used to characterize of pertechnetate adsorption is distribution coefficient Kd. Maximum Kd of about 7 × 104 mL g−1 was measured for acidic pH (pH 2–3). In general, Kd was decreasing with increasing pH; however, the sample treated with zinc chloride sorbed TcO4 very well even at pH 8 (Kd = 5 × 103 mL g−1).


Activated carbon Pertechnetate Adsorption Separation Kinetics Equilibrium isotherm Distribution coefficient 



This contribution/publication is the result of the project implementation: CE for development and application of advanced diagnostic methods in processing of metallic and non-metallic materials, ITMS: 26220120048, supported by the Research and Development Operational, Program funded by the ERDF.


  1. 1.
    Perrier C, Segrè E (1937) Some chemical properties of element 43. J Chem Phys 5:712–716CrossRefGoogle Scholar
  2. 2.
    Kónya J, Nagy NM (2012) Nuclear and radiochemistry. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Lieser KH (1993) Technetium in the nuclear fuel cycle, in medicine and in the environment. Radiochim Acta 63:5–8Google Scholar
  4. 4.
    Desmet G, Myttenaere C (1986) Technetium in the environment. Elsevier, AmsterdamCrossRefGoogle Scholar
  5. 5.
    Schwochau K (2000) Technetium: chemistry and radiopharmaceutical applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  6. 6.
    Brookins DG (1988) Eh-pH diagrams for geochemistry. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Poineau F, Mausolf E, Jarvinen GD, Sattelberger AP, Czerwinski KR (2012) Technetium chemistry in the fuel cycle: combining basic and applied studies. Inorg Chem 51(15):8462–8467CrossRefGoogle Scholar
  8. 8.
    El-Wear S, German KE, Peretrukhin VF (1992) Sorption of technetium on inorganic sorbents and natural minerals. J Radioanal Nucl Chem 157(1):3–14CrossRefGoogle Scholar
  9. 9.
    Jedináková-Křížová V (1996) Radionuclides migration in the geosphere and their sorption on natural sorbents. J Radioanal Nucl Chem 208(2):559–575CrossRefGoogle Scholar
  10. 10.
    Kohličková M, Jedináková-Křížová V, Horejš M (1999) Influence of technetium and rhenium speciation on their sorption on natural sorbents. Czech J Phys 49(1):695–700CrossRefGoogle Scholar
  11. 11.
    Tkáč P, Kopunec R, Macášek F, Skrašková S (2000) Sorption of Tc(IV) and Tc(VII) on soils: influence of humic substances. J Radioanal Nucl Chem 246(3):527–531CrossRefGoogle Scholar
  12. 12.
    Vinšová H, Konirová R, Koudelková M, Jedináková-Křížová V (2004) Sorption of technetium and rhenium on natural sorbents under aerobic conditions. J Radioanal Nucl Chem 261(2):407–413CrossRefGoogle Scholar
  13. 13.
    Večerník P, Jedináková-Křížová V (2006) Diffusion of 99-technetium in compacted bentonite under aerobic and anaerobic conditions. Czech J Phys 56:D665–D672CrossRefGoogle Scholar
  14. 14.
    Mattson JS, Mark HB Jr (1971) Activated carbon. Dekker, New YorkGoogle Scholar
  15. 15.
    Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878CrossRefGoogle Scholar
  16. 16.
    Marsh H (2001) Activated carbon compendium. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Hu Z, Srinivasan MP (2001) Mesoporous high-surface-area activated carbon. Microporous Mesoporous Mater 43:267–275CrossRefGoogle Scholar
  18. 18.
    Bansal RCh, Goyal M (2005) Activated carbon adsorption. Taylor and Francis, LondonCrossRefGoogle Scholar
  19. 19.
    Kang S, Jian-Chun J, Dan-dan C (2011) Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification. Biomass Bioenergy 35:3643–3647CrossRefGoogle Scholar
  20. 20.
    Giraldo L, Moreno-Piraján CM (2012) Synthesis of activated carbon mesoporous from coffee waste and its application in adsorption zinc and mercury ions from aqueous solution. J Chem 9(2):938–948Google Scholar
  21. 21.
    Stoeckli F (1990) Microporous carbons and their characterization: the present state of art. Carbon 28:1–6CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Reinoso F, Linares-Solano A (1989) In: Thrower PA (ed) Chemistry and physics of carbon: a series of advances. Marcel Dekker, New YorkGoogle Scholar
  23. 23.
    Chmielewska E (2008) Development of new generation of environmental adsorbents based on natural nanomaterials. Chem Listy 102(2):124–130Google Scholar
  24. 24.
    McDougall GJ, Hancock RD, Nicol MJ, Wellington OL, Copperthwaite RG (1980) The mechanism of the adsorption of gold cyanide on activated carbon. J S Afr Inst Min Metall 80:344–356Google Scholar
  25. 25.
    Al-Bayoumy S, El-Kolaly M (1982) Some radiochemical studies on the adsorption behaviour of molybdenum-99 on silver-coated carbon granules and activated carbon. J Radioanal Nucl Chem 68(1):7–13CrossRefGoogle Scholar
  26. 26.
    Morozova AA, Shashkova IL (1995) Sorption of cesium, strontium, and some toxic metal ions from aqueous media on chemically modified carbon sorbents. Pharm Chem J 29(8):553–556CrossRefGoogle Scholar
  27. 27.
    Mandić M, Vuković Ž, Lazić S, Raičević S (1996) Sorption of hypoiodous acid on activated carbon. J Radioanal Nucl Chem 208(2):453–460CrossRefGoogle Scholar
  28. 28.
    Wu J, Xie Z, Guo K, Claesson O (2001) Measurement and prediction of the adsorption of binary mixtures of organic vapors on activated carbon. Adsorpt Sci Technol 19:737–749CrossRefGoogle Scholar
  29. 29.
    Wu J, Hammarström L-G, Claesson O, Fängmark IE (2003) Modeling the influence of physico-chemical properties of volatile organic compounds on activated carbon adsorption capacity. Carbon 41:1322–1325CrossRefGoogle Scholar
  30. 30.
    Pawłowski L, Dudzinska MR, Pawłowski A (2003) In: Wolborska A, Pilecka-Bujnowicz K (eds) Environmental engineering studies. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  31. 31.
    Wu J (2004) Modeling adsorption of organic compounds on activated carbon A multivariate approach. Solfjädern Offset AB, UmeåGoogle Scholar
  32. 32.
    Samonin VV, Nikonova VYu, Podvyaznikov ML (2008) Sorption properties of fullerene-modified activated carbon with respect to metal ions. Prot Met 44(2):190–192CrossRefGoogle Scholar
  33. 33.
    Tikhonova LP, Goba VE, Kovtun MF, Tarasenko YuA, Khavryuchenko VD, Lyubchik SB, Boiko AN (2008) Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste. Russ J Appl Chem 81(8):1348–1355CrossRefGoogle Scholar
  34. 34.
    Buzaeva MV, Kalyukova EN, Klimov ES (2010) Sorption properties of AG-3 activated carbon in relation to oil products. Russ J Appl Chem 83(10):1883–1885CrossRefGoogle Scholar
  35. 35.
    Sheveleva IV, Zheleznov VV, Bratskaya SYu, Avramenko VA, Kuryavyi VG (2011) Sorption of cesium radionuclides with composite carbon fibrous materials. Russ J Appl Chem 84(7):1152–1157CrossRefGoogle Scholar
  36. 36.
    Bazan RE, Bastos-Neto M, Moeller A, Dreisbach F, Staudt R (2011) Adsorption equilibria of O2, Ar, Kr and Xe on activated carbon and zeolites: single component and mixture data. Adsorption 17:371–383CrossRefGoogle Scholar
  37. 37.
    Sheng G, Li Y, Dong H, Shao D (2012) Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes. J Radioanal Nucl Chem 293(3):797–806CrossRefGoogle Scholar
  38. 38.
    Kaźmierczak J, Nowicki P, Pietrzak R (2012) Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption 19:273–281CrossRefGoogle Scholar
  39. 39.
    Fang Q, Chen B (2012) Adsorption of perchlorate onto raw and oxidized carbon nanotubes in aqueous solution. Carbon 50:2209–2219CrossRefGoogle Scholar
  40. 40.
    Yoon I-H, Meng X, Wang Ch, Kim K-W, Bang S, Choe E, Lippincott L (2009) Perchlorate adsorption and desorption on activated carbon and anion exchange resin. J Hazard Mater 164:87–94CrossRefGoogle Scholar
  41. 41.
    Weber W Jr (1974) Adsorption processes. Pure Appl Chem 37(3):375–392CrossRefGoogle Scholar
  42. 42.
    Lin Ch-Ch (1979) Kinetics and mechanisms of adsorption of heavy metal ions on activated carbon, (Thesis).
  43. 43.
    Cheremisionoff NP, Ellerbusch F (1978) Carbon adsorption handbook. Ann Arbor Science Publishers, MichiganGoogle Scholar
  44. 44.
    Stoeckli F, Hugi-Cleary D (2001) On the mechanisms of phenol adsorption by carbons. Russ Chem Bul 50(11):2060–2063CrossRefGoogle Scholar
  45. 45.
    Kawasaki M, Omori T, Hasegawa K (1993) Adsorption of pertechnetate on an anion exchange resin. Radiochim Acta 63:53–56Google Scholar
  46. 46.
    Wang Y, Gao H, Yeredla R, Xu H, Abrecht M (2007) Control of pertechnetate sorption on activated carbon by surface functional groups. J Coll Inter Sci 305:209–217CrossRefGoogle Scholar
  47. 47.
    Lodewyckx P (2008) Adsorption on activated carbon: one underlying mechanism? NATO science for peace and security series C: environmental security. Springer, NetherlandsGoogle Scholar
  48. 48.
    Viani B (1999) Assessing materials (“Geters”) to immobilize or retard the transport of technetium trough the engineered barrier system at the potential Yucca mountain nuclear waste repository. Lawrence Livermore National Laboratoy, LivermoreGoogle Scholar
  49. 49.
    Poineau F, Hartmann T, Chinthaka Silva GW, Jarvinen G, Czerwinski K (2009) Preparation of technetium metal by thermal treatment under argon/H2O. J Radioanal Nucl Chem 279(1):16CrossRefGoogle Scholar
  50. 50.
    Yamagishi I, Kubota M (1989) Separation of technetium with active carbon. Nucl Sci Technol 26:1038–1044CrossRefGoogle Scholar
  51. 51.
    Gu B, Dowlen KE, Liang L, Clausen JL (1996) Efficient separation and recovery of technetium-99 from contaminated groundwater. Sep Technol 6:123–132CrossRefGoogle Scholar
  52. 52.
    Holm E, Gäfvert T, Lindhal P, Roos P (2000) In situ sorption of technetium using activated carbon. Appl Radiat Isot 53:153–157CrossRefGoogle Scholar
  53. 53.
    Ito K, Akiba K (1991) Adsorption of pertechnetate ion on active carbon from acids and their salt solutions. J Radioanal Nucl Chem 152:381–390CrossRefGoogle Scholar
  54. 54.
    Ito K, Yachidate A (1992) Behavior of pertechnetate ion adsorption from aqueous solutions shown by activated carbons derived from different solutions. Carbon 30(5):767–771CrossRefGoogle Scholar
  55. 55.
    Harkins WD, Jura EJ (1944) The decrease of free surface energy as a basis for the development of equations for adsorption isotherms; and the existence of two condensed phases in films on solids. J Chem Phys 12:112–113CrossRefGoogle Scholar
  56. 56.
    Barrett EPT, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  57. 57.
    ImageJ Application (2004) National Institutes of Health, Maryland.
  58. 58.
    Venhryn BYA, Grygorchak II, Kulyk YUO, Mudry SI, Shvets RYA (2008) Porous structure of carbon-based materials studied by means of X-ray small angle scattering method. Opt Appl 38(1):119–124Google Scholar
  59. 59.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Roquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendation 1984, IUPAC, Physical Chemistry Division). Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  60. 60.
    Hudec P (2012) Texture of solids—determination of surface properties of adsorbents and catalysts by physical adsorption of nitrogen (in Slovak). STU publisher, BratislavaGoogle Scholar
  61. 61.
    Groen JC, Peffer LAA, Pérez-Ramírez J (2003) Pore size determination in modified micro- and mesoporous materials Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60(1):1–17CrossRefGoogle Scholar
  62. 62.
    Matisová E, Hrouzková S, Novák I, Berek D, Kozánková J (1999) Novel porous carbons and their utlization in trace analysis. Chem Papers 53(1):40–48Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • P. Rajec
    • 1
    • 2
  • M. Galamboš
    • 1
  • M. Daňo
    • 1
  • O. Rosskopfová
    • 1
  • M. Čaplovičová
    • 3
    • 4
  • P. Hudec
    • 5
  • M. Horňáček
    • 5
  • I. Novák
    • 6
  • D. Berek
    • 6
  • Ľ. Čaplovič
    • 7
  1. 1.Department of Nuclear Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  2. 2.BIONTBratislavaSlovak Republic
  3. 3.Department of Geology of Mineral Deposits, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  4. 4.Center STU for Nanodiagnostics, University Research ParkSlovak University of Technology in BratislavaBratislavaSlovak Republic
  5. 5.Department of Petroleum Technology and Petrochemistry, Faculty of Chemical and Food Technology, Institute of Organic Chemistry, Catalysis and PetrochemistrySlovak University of Technology in BratislavaBratislavaSlovak Republic
  6. 6.Polymer InstituteSlovak Academy of SciencesBratislavaSlovak Republic
  7. 7.Faculty of Materials Science and Technology in TrnavaSlovak University of Technology in BratislavaTrnavaSlovak republic

Personalised recommendations