Journal of Radioanalytical and Nuclear Chemistry

, Volume 301, Issue 3, pp 711–729 | Cite as

Quantifying multiple trace elements in uranium ore concentrates: an interlaboratory comparison

  • S. Bürger
  • S. F. Boulyga
  • M. V. Peńkin
  • D. Bostick
  • S. Jovanovic
  • R. Lindvall
  • G. Rasmussen
  • L. Riciputi


An intercomparison was organized, with six laboratories tasked to quantify sixty-nine impurities in two uranium materials. The main technique employed for analysis was inductively coupled plasma mass spectrometry in combination with matrix-matched external calibration. The results presented highlight the current state-of-the-practice; lessons learned include previously unaccounted polyatomic interferences, issues related to sample dissolution, blank correction and calibration, and the challenge of estimating measurement uncertainties. The exercise yielded consensus values for the two analysed materials, suitable for use as laboratory standards to partially fill a gap in the availability of uranium reference materials characterized for impurities.


Impurity analysis Inductively coupled plasma mass spectrometry Interlaboratory comparison Reference material Uranium ore concentrate 


  1. 1.
    ASTM C753-04 (2009) Standard specification for nuclear-grade sinterable uranium dioxide powderGoogle Scholar
  2. 2.
    ASTM C967-13 (2013) Standard specification for uranium ore concentrateGoogle Scholar
  3. 3.
    Keegan E, Richter S, Kelly I, Wong H, Gadd P, Kuehn H, Alonso-Munoz A (2008) The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Appl Geochem 23:765–777CrossRefGoogle Scholar
  4. 4.
    Badaut V, Wallenius M, Mayer K (2009) Anion analysis in uranium ore concentrates by ion chromatography. J Radioanal Nucl Chem 280(1):57–61CrossRefGoogle Scholar
  5. 5.
    Varga Z, Wallenius M, Mayer K, Meppen M (2011) Analysis of uranium ore concentrates for origin assessment. Proc Radiochim Acta 1:1–4Google Scholar
  6. 6.
    Keegan E, Wallenius M, Mayer K, Varga Z, Rasmussen G (2012) Attribution of uranium ore concentrates using elemental and anionic data. Appl Geochem 27:1600–1609CrossRefGoogle Scholar
  7. 7.
    Peńkin MV, Zhao K, Fischer DM, Boulyga SF (2012) Use of rare-earth elemental impurity patterns for origin assessment of uranium materials. In: 9th international conference on methods and applications of radioanalytical chemistry (MARC IX), Kailua-KonaGoogle Scholar
  8. 8.
    Button P, Healey G, Chipley D (2013) Change in impurities observed during the refining and conversion processes. ESARDA Symposium, BrugesGoogle Scholar
  9. 9.
    Mayer K, Tushingham J, Boulyga S, Aregbe Y (2009) Report on the workshop on measurements of impurities in uranium. ESARDA Bull 43:57–64Google Scholar
  10. 10.
    Fischer DM (2010) The evolution of environmental sampling for safeguards. In: IAEA symposium on international safeguards, Vienna. IAEA-CN-184/138Google Scholar
  11. 11.
    Balsley S (2010) Destructive nuclear material analysis for safeguards: importance and future trends. In: IAEA symposium on international safeguards, Vienna. IAEA-CN-184/278Google Scholar
  12. 12.
    Peńkin M (2012) Safeguards needs for characterization of uranium compounds. In: IAEA technical meet on analysis of elemental impurities in uranium samples, ViennaGoogle Scholar
  13. 13.
    De Souza AL, Cotrim MEB, Pires MAF (2013) An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchem J 106:194–201CrossRefGoogle Scholar
  14. 14.
    Goyal N, Purohit PJ, Dhobale AR, Patel BM, Page AG, Sastry MD (1987) Electrothermal atomisation atomic absorption spectrometric determination of silver, beryllium, calcium, iron, lead and tin in uranium without preliminary separation. J Anal At Spectrom 2:459–461CrossRefGoogle Scholar
  15. 15.
    Santoliquido PM (1988) Determination of trace-elements in uranium oxide (U3O8) by inductively coupled plasma emission-spectrometry and graphite furnace atomic-absorption spectrometry. J Res Natl Bur Stand 93:452–454CrossRefGoogle Scholar
  16. 16.
    Premadas A, Srivastava K (2002) Inductively coupled plasma atomic emission spectrometric determination of lanthanides and yttrium in various uranium hydrometallurgical products. J Radioanal Nucl Chem 251(2):233–239CrossRefGoogle Scholar
  17. 17.
    Dwivedi VN, Mahanta PL, Premadas A (2003) An integrated approach to the complete chemical analysis of magnesium or sodium diuranate (yellow cake) sample. J Radioanal Nucl Chem 258(3):575–581CrossRefGoogle Scholar
  18. 18.
    Kyser K, Chipley D, Bukata A, Polito P, Fitzpatrick A, Alexandre P (2003) Application of laser ablation and high resolution ICPMS to the analysis of metal contents of three rings, ages of uranium-rich minerals, and Se content in sulphide ores. Can J Anal Sci Spectrosc 48(5):258–268Google Scholar
  19. 19.
    Oliveira OP, Sarkis JES (2002) Determination of impurities in uranium oxide by ICPMS by the matrix matching method. J Radioanal Nucl Chem 254(3):519–526CrossRefGoogle Scholar
  20. 20.
    ASTM C1287-10 (2010) Standard test method for determination of impurities in nuclear grade uranium compounds by inductively coupled plasma mass spectrometryGoogle Scholar
  21. 21.
    Quemet A, Brennetot R, Chevalier E, Prian E, Laridon AL, Mariet C, Fichet P, Laszak I, Goutelard F (2012) Analysis of twenty five impurities in uranium matrix by ICP-MS with iron measurement optimized by using reaction collision cell, cold plasma or medium resolution. Talanta 99:207–212CrossRefGoogle Scholar
  22. 22.
    Bürger S, Riciputi LR, Bostick DA (2007) Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method. J Radioanal Nucl Chem 274(3):491–505CrossRefGoogle Scholar
  23. 23.
    Švedkauskaitė-LeGore J, Rasmussen G, Abousahl S, Van Belle P (2008) Investigation of the sample characteristics needed for the determination of the origin of uranium-bearing materials. J Radioanal Nucl Chem 278(1):201–209CrossRefGoogle Scholar
  24. 24.
    Varga Z, Katona R, Stefánka Z, Wallenius M, Mayer K, Nicholl A (2010) Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta 80:1744–1749CrossRefGoogle Scholar
  25. 25.
    Wolf SF, Bowers DL, Cunnane JC (2005) Analysis of high burnup spent nuclear fuel by ICP-MS. J Radioanal Nucl Chem 263(3):581–586CrossRefGoogle Scholar
  26. 26.
    Doubek N, Bagliano G, Deron S (1984) Report on intercomparison exercise SR-54. Determination of impurities in U3O8. IAEA, Vienna. IAEA/RL/110Google Scholar
  27. 27.
    Doubek N, Bagliano G, Deron S (1985) Report on intercomparison exercise SR-64. Determination of impurities in U3O8. IAEA, Vienna. IAEA/RL/116Google Scholar
  28. 28.
    IAEA (1985) Reference sheet SR-54: impurities in uranium oxide (U3O8)Google Scholar
  29. 29.
    Granier G, Balsley SD, Bulyha S, Aregbe Y, Roudila D (2012) Round robin “impurities in uranium matrix”: a success for CETAMA and IAEA. Procedia Chem 7:666–672CrossRefGoogle Scholar
  30. 30.
    Currie LA (1968) Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem 40:586–593CrossRefGoogle Scholar
  31. 31.
    Currie LA (1995) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC recommendations). Pure Appl Chem 87(10):1699–1723Google Scholar
  32. 32.
    IRMM (1997) Certificate of isotopic composition. Reference number SMS 7267, sample identification # 9064-01-BGoogle Scholar
  33. 33.
    ISO 17294-2 (2003) Water quality: application of inductively coupled plasma mass spectrometry. Part 2: determination of 62 elementsGoogle Scholar
  34. 34.
    DIN 38406-29 (1999) Determination of 61 elements by inductively coupled plasma mass spectrometry (E29)Google Scholar
  35. 35.
    ASTM C1347-08 (2008) Standard practice for preparation and dissolution of uranium materials for analysisGoogle Scholar
  36. 36.
    Link DD, Walter PJ, Kingston HM (1998) Development and validation of the new EPA microwave-assisted leach method 3051A. Environ Sci Technol 32:3623–3628CrossRefGoogle Scholar
  37. 37.
    JCGM 100:2008 (2008) Evaluation of measurement data: guide to the expression of uncertainty in measurementGoogle Scholar
  38. 38.
    ISO Guide 35 (1989) Certification of reference materials: general and statistical principlesGoogle Scholar
  39. 39.
    Bürger S, Mathew KJ, Mason P, Narayanan U (2009) Reference materials characterized for impurities in uranium matrices: an overview and re-evaluation of the NBL CRM 124 series. J Radioanal Nucl Chem 279(2):659–673CrossRefGoogle Scholar
  40. 40.
    Zawisza B, Pytlakowska K, Feist B, Polowniak M, Kita A, Sitko R (2011) Determination of rare earth elements by spectroscopic techniques: a review. J Anal At Spectrom 26:2373–2390CrossRefGoogle Scholar
  41. 41.
    Varga Z, Wallenius M, Mayer K (2010) Origin assessment of uranium ore concentrates based on their REE impurity pattern. Radiochim Acta 98:771–778CrossRefGoogle Scholar
  42. 42.
    Riciputi L (2012) Utilization of REE and trace elements in UOC. In: IAEA technical meeting on analysis of elemental impurities in uranium samples, ViennaGoogle Scholar
  43. 43.
    Peńkin M (2012) Use of REE patterns in safeguards data evaluations. In: IAEA technical meeting on analysis of elemental impurities in uranium samples, ViennaGoogle Scholar
  44. 44.
    CETAMA (2011) Reference materials catalogueGoogle Scholar
  45. 45.
    NBL (1991) Certificate of analysis. CRM 123(1–7): uranium (normal) oxideGoogle Scholar
  46. 46.
    NBL (1983) Provisional certificate of analysis. CRM 124(1–7): uranium (normal) oxideGoogle Scholar
  47. 47.
    CANMET (1988) Certificate of analysis. CUP-2: uranium ore concentrateGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • S. Bürger
    • 1
  • S. F. Boulyga
    • 1
  • M. V. Peńkin
    • 1
  • D. Bostick
    • 2
  • S. Jovanovic
    • 3
  • R. Lindvall
    • 4
  • G. Rasmussen
    • 5
  • L. Riciputi
    • 6
  1. 1.Department of SafeguardsInternational Atomic Energy AgencyViennaAustria
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.Canadian Nuclear Safety Commission LaboratoryOttawaCanada
  4. 4.Lawrence Livermore National LaboratoryLivermoreUSA
  5. 5.Institute for Transuranium ElementsKarlsruheGermany
  6. 6.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations