Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 2, pp 773–779 | Cite as

What is wise in the production of 99Mo? A comparison of eight possible production routes

  • Bert Wolterbeek
  • Jan Leen Kloosterman
  • Danny Lathouwers
  • Martin Rohde
  • August Winkelman
  • Lodewijk Frima
  • Frank Wols
Article

Abstract

The present paper addresses eight possible routes of producing 99Mo, and discusses both yield and 99Mo specific activities (SA) in the context of anticipated worldwide demand. Target dimensions are modelled by considering both limits set by cooling and by inside-target radiation attenuation characteristics. Energy deposition profiles are set up by MCNP6, reaction probabilities are taken from TALYS/TENDL and JANIS codes, and both are used in arriving at the produced 99Mo. The outcomes suggest that U neutron-fission may remain one of the most relevant and efficient means of producing 99Mo at the world-demand level, but that within this domain new developments may surface, such as ADSR or AHR production modes. Accelerator-based 99Mo production is discussed as asking for developments in both target cooling and new concepts in post-EOB upgrading of 99Mo SA, and/or new concepts for 99Mo/99mTc-generators, the latter possibly in both volumes (mass) and 99Mo capacities.

Keywords

99Mo production Reactors Accelerators Targets Yield Specific activity 

References

  1. 1.
    Richards P (1989) Technetium-99 m: the early days. BNL-43197 CONF-8909193-1. Brookhaven National Laboratory, New YorkGoogle Scholar
  2. 2.
    Ross C, Galea R, Saull P, Davidson W, Brown P, Brown D, Harvey J, Messina G, Wassenaar R, De Jong M (2010) La Physique au Canada 66:19–24Google Scholar
  3. 3.
    Report of the Expert Review Panel on Medical Isotope Production (2009) Presented to the Minister of Natural Resources Canada 30 November 2009. 135 pp http://nrcan.gc.ca/eneene/sources/uranuc/pdf/panrep-rapexp-eng.pdf
  4. 4.
    OECD (2010) The supply of medical radioisotopes, interim report of the OECD/NEA high-level group on security of supply of medical radioisotopes. OECD, Nagoya, http://www.nea.fr/med-radio/reports/HLG-MR-Interim-report.pdf
  5. 5.
    Pillai MRA, Knapp FF (2012) Q J Nucl Med Mol Im 56(4):385–399Google Scholar
  6. 6.
    Van der Marck SC, Koning AJ, Charlton KE (2010) Eur J Nucl Med Mol Im 37:1817–1820CrossRefGoogle Scholar
  7. 7.
    Lyra M, Charalambatou P, Roussou E, Fytros S, Baka I (2011) Hellenic J Nucl Med 14:49–55Google Scholar
  8. 8.
    Pillai MRA (2011) J Nucl Med 52:15–28Google Scholar
  9. 9.
    TRIUMF (2008) TRIUMF report of the taskforce on alternatives for medical-isotope production: making medical isotopes. In: Fong A, Meyer TI, Zala K (eds). Generation Printing, VancouverGoogle Scholar
  10. 10.
    Ruth T (2010) La Physique au Canada 66:15–16Google Scholar
  11. 11.
    Challan MB, Comsan MHN, Abou-Zaid MA (2007) J Nucl Rad Phys 2:1–12Google Scholar
  12. 12.
    Nikiforov VI, Uvarov VL (2011) Nuclear Instrum Methods B269:3149–3152CrossRefGoogle Scholar
  13. 13.
    Bunatian GG, Nikolenko VG, Popov AB (2009) JINR Communication E6-2009-182 Dubna, Russia www.jinr.ru/Preprints/2009/182%28E6-2009-182%29.pdf
  14. 14.
    Danon Y, Block R, Harvey J (2010) Topical Meeting on Isotopes for Medical and Industry TANSAO. Trans Am Nucl Soc 103:1081–1082Google Scholar
  15. 15.
    Gagnon K, Bénard F, Kovacs M, Ruth TJ, Schaffer P, Wilson S, McQuarrie SA (2011) Nucl Med Biol 38:907–916CrossRefGoogle Scholar
  16. 16.
    AEN-NEA (2010) The supply of medical radioisotopes: review of potential molybdenum-99/technetium-99 m production technologies. AEN-NEA, Nevada, 73 ppGoogle Scholar
  17. 17.
    IAEA (2013) Nuclear energy series no. NF-T-5.4 Non-HEU production technologies for Molybdenum-99 and Technetium-99 m. STI/Pub/1589. IAEA, ViennaGoogle Scholar
  18. 18.
    Bertsche K (2010) Accelerator production options for 99Mo. SLAC-PUB-14132, CaliforniaGoogle Scholar
  19. 19.
    Technopolis-group (2008) Het Medisch Gebruik van Radioisotopen tot 2025: Een Toekomstverkenning 38 ppGoogle Scholar
  20. 20.
    Blackburn BW (2002) High power target development for accelerator-based neutron capture therapy. MIT Thesis, MassachusettsGoogle Scholar
  21. 21.
    Silverman I, Yarin AL, Reznik SN, Arenshtam A, Kijet D, Nagler A (2006) Int Heat Mass Tran 49:2782–2792CrossRefGoogle Scholar
  22. 22.
    Koning AJ, Rochman D, van der Marck S, Kopecky J, Sublet JC, Pomp S, Sjostrand H, Forrest R, Bauge E, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R, “TENDL-2013: TALYS-based evaluated nuclear data library”. www.talys.eu/tendl-2013.html
  23. 23.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Schenter RE, Wester DW, Hollenberg GW, Rapko BM, Lumetta GJ (2009) US Patent 2009/0060812 A1Google Scholar
  26. 26.
    Nagai Y, Hatsukawa Y (2009) J Phys Soc Japan 78:033201CrossRefGoogle Scholar
  27. 27.
    Sabelnikov AV, Maslov OD, Molokanova LG, Gustova MV, Dmitriev SN (2006) Radiochemistry 48:191–194CrossRefGoogle Scholar
  28. 28.
    IAEA TECDOC-1178 (2000) Handbook on photonuclear data for applications cross-sections and spectra, IAEA, ViennaGoogle Scholar
  29. 29.
    Gellie RW (1978) Austr J Phys 21:765–768CrossRefGoogle Scholar
  30. 30.
    Ferrero F (1967) Il Nuovo Cimento 6:585–591CrossRefGoogle Scholar
  31. 31.
    Tkac P, Chemerisov S, Makarashvili V, VandeGrift GF, Harvey J (2011) Development activities in support of accelerator production of 99Mo production through the γ/n reaction on 100Mo. Mo-99 2011—Molybdenum-99 Topical Meeting. December 4–7 (2011) La Fonda Hotel, Santa Fe, New MexicoGoogle Scholar
  32. 32.
    Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Appl Rad Isot 85:101–113. doi: 10.1016/j.apradiso.2013.10.004 CrossRefGoogle Scholar
  33. 33.
    Breeman WAP, Fröberg AC, De Blois E, Van Gameren A, Melis M, De Jong M, Maina T, Nock BA, Erion JL, Mäcke HR, Krenning EP (2008) Nucl Med Biol 35:839–849CrossRefGoogle Scholar
  34. 34.
    Naik H, Suryanarayana SV, Jagadeesan KC, Thakare SV, Joshi PV, Nimje VT, Mittal KC, Goswami A, Venugopal V, Kailas S (2013) J Radioanal Nucl Chem 295:807–816. doi: 10.1007/s10967-012-1958-9 CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Gerasimov AS (1989) Atomnaya Énergiya 67:104–108Google Scholar
  37. 37.
    Sameh AA, Ache HJ (1987) Radiochim Acta 41:65–72Google Scholar
  38. 38.
    Baumgärtner F (1961) Table of neutron activation constants. Karl Thiemig KG Muenchen, CarsonGoogle Scholar
  39. 39.
    El Abd A (2010) J Radioanal Nucl Chem 284:321–326. doi: 10.1007/s10967-010-0487-7 CrossRefGoogle Scholar
  40. 40.
    Asif M, Mushtaq A (2010) J Radioanal Nuc. Chem 284:439–442. doi: 10.1007/s10967-010-0490-z CrossRefGoogle Scholar
  41. 41.
    Denkova AG, Terpstra BE, Steinbach OM, ten Dam J, Wolterbeek HTh (2013) Separ Sci Technol 48:1331–1338. doi: 10.1080/01496395.2012.736443 CrossRefGoogle Scholar
  42. 42.
    Tomar BS, Steinebach OM, Terpstra BE, Bode P, Wolterbeek HTh (2010) Radiochim Acta 98:499–506. doi: 10.1524/ract.2010.1744 CrossRefGoogle Scholar
  43. 43.
    OECD (2010) (NEA no. 6967) The supply of medical radioisotopes. In: An economic study of the molybdenum-99 supply Chain. OECD, VeniceGoogle Scholar
  44. 44.
    IAEA TECDOC-1601 (2008) Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short-lived Radioisotopes. IAEA, ViennaGoogle Scholar
  45. 45.
    BNL-94462-2010 (2010) Aqueous homogeneuous reactor technical panel reportGoogle Scholar
  46. 46.
    Chuvlin DU, Meister JD, Abalin SS, Ball RM, Grigoriev GY, Kvostionov VE, Markovskij DV, Nordyke HW, Pavshook VA (2003) J Radioanal Nucl Chem 257:59–63CrossRefGoogle Scholar
  47. 47.
    Kloosterman JL, Huisman MV, Rohde M (2014) The role of reactor physics toward a sustainable future. In: PHYSOR 2014. The bWestin Myako, Kyoto, Japan. Sept 28–October 3 (on CD-ROM, submitted)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Bert Wolterbeek
    • 1
  • Jan Leen Kloosterman
    • 1
  • Danny Lathouwers
    • 1
  • Martin Rohde
    • 1
  • August Winkelman
    • 1
  • Lodewijk Frima
    • 1
  • Frank Wols
    • 1
  1. 1.Reactor Institute Delft (RID)Delft University of TechnologyDelftThe Netherlands

Personalised recommendations