Journal of Radioanalytical and Nuclear Chemistry

, Volume 301, Issue 2, pp 607–613 | Cite as

Relationship between particle size and radiocesium in fluvial suspended sediment related to the Fukushima Daiichi Nuclear Power Plant accident

  • Kazuya TanakaEmail author
  • Hokuto Iwatani
  • Aya Sakaguchi
  • Yoshio Takahashi
  • Yuichi Onda


We collected fluvial suspended sediments in Fukushima after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident and analyzed the 137Cs concentration in bulk and size-fractioned samples to investigate the particle-size-dependent distribution of radiocesium. The 137Cs concentration in bulk suspended sediments decreased from August to December 2011, possibly reflecting a decrease of radiocesium concentration in its source materials. Smaller particles had higher radiocesium concentrations, reflecting larger specific surface areas. Silt- and sand-size fractions occupied more than 95 % of the total 137Cs in the suspended sediments. The contribution of clay-size fractions, which had the highest 137Cs concentration, was quite small because of their low frequency. A line of the data showed that the particle size distribution of radiocesium was essential to evaluate the migration and distribution of radiocesium in river systems where radiocesium is mainly present as particulate form after the FDNPP accident.


Fukushima Radiocesium Particle size Suspended sediment 



This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas Grant Number 24110008.


  1. 1.
    Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) J Nucl Sci Technol 48:1129–1134CrossRefGoogle Scholar
  2. 2.
    Kinoshita N, Sueki K, Sasa K, Kitagawa J, Ikarashi S, Nishimura T, Wong Y, Satou Y, Handa K, Takahashi T, Sato M, Yamagata T (2011) PNAS 108:19526–19529CrossRefGoogle Scholar
  3. 3.
    Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) J Environ Radioact 111:18–27CrossRefGoogle Scholar
  4. 4.
    Honda MC, Aono T, Aoyama M, Hamajima Y, Kawakami H, Kitamura M, Masumoto Y, Miyazawa Y, Takigawa M, Saino T (2012) Geochem J 46:e1–e9CrossRefGoogle Scholar
  5. 5.
    Kanai Y (2012) J Environ Radioact 111:33–37CrossRefGoogle Scholar
  6. 6.
    Yoshida N, Takahashi Y (2012) Elements 8:201–206CrossRefGoogle Scholar
  7. 7.
    MEXT (2013) Available at: Accessed 24 May 2013
  8. 8.
    Kato H, Onda Y, Teramage M (2012) J Environ Radioact 111:59–64CrossRefGoogle Scholar
  9. 9.
    Ohno T, Muramatsu Y, Miura Y, Oda K, Inagawa N, Ogawa H, Yamazaki A, Toyama C, Sato M (2012) Geochem J 46:287–295CrossRefGoogle Scholar
  10. 10.
    Tanaka K, Takahashi Y, Sakaguchi A, Umeo M, Hayakawa S, Tanida H, Saito T, Kanai Y (2012) Geochem J 46:73–76CrossRefGoogle Scholar
  11. 11.
    Matsunaga T, Koarashi J, Atarashi-Andoh M, Nagao S, Sato T, Nagai H (2013) Sci Total Environ 447:301–314CrossRefGoogle Scholar
  12. 12.
    Tsukada H, Takeda A, Hisamatsu S, Inaba J (2008) J Environ Radioact 99:875–881CrossRefGoogle Scholar
  13. 13.
    Kozai N, Ohnuki T, Arisaka M, Watanabe M, Sakamoto F, Yamasaki S, Jiang M (2012) J Nucl Sci Technol 49:473–478CrossRefGoogle Scholar
  14. 14.
    Tanaka K, Sakaguchi A, Kanai Y, Tsuruta H, Shinohara A, Takahashi Y (2013) J Radioanal Nucl Chem 295:1927–1935CrossRefGoogle Scholar
  15. 15.
    Bonnett PJP (1990) J Environ Radioact 11:251–266CrossRefGoogle Scholar
  16. 16.
    Fukuyama T, Takenaka C, Onda Y (2005) Sci Total Environ 350:238–247CrossRefGoogle Scholar
  17. 17.
    Ueda S, Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S (2013) J Environ Radioact 118:96–104CrossRefGoogle Scholar
  18. 18.
    Livens FR, Baxter MS (1988) Sci Total Environ 70:1–17CrossRefGoogle Scholar
  19. 19.
    Cundy AB, Croudace IW (1995) J Environ Radioact 29:191–211CrossRefGoogle Scholar
  20. 20.
    Spezzano P (2005) J Environ Radioact 83:117–127CrossRefGoogle Scholar
  21. 21.
    He Q, Walling DE (1996) J Environ Radioact 30:117–137CrossRefGoogle Scholar
  22. 22.
    Tanaka K, Iwatani H, Sakaguchi A, Fan QH, Takahashi Y (in revision) J Environ RadioactGoogle Scholar
  23. 23.
    Phillips JM, Russell MA, Walling DE (2000) Hydrol Process 14:2589–2602CrossRefGoogle Scholar
  24. 24.
    Clifton J, McDonald P, Plater A, Oldfield F (1999) Earth Surf Process Landf 24:725–730CrossRefGoogle Scholar
  25. 25.
    Tanaka K, Iwatani H, Takahashi Y, Sakaguchi A, Yoshimura K, Onda Y (2013) PLoS ONE 8(11):e80794. doi: 10.1371/journal.pone.0080794 CrossRefGoogle Scholar
  26. 26.
    Japan Meteorological Agency (2013) Available at: Accessed 20 Oct 2013
  27. 27.
    Geological Survey of Japan, AIST (2013) Available at: Accessed 20 Nov 2013
  28. 28.
    Qin H, Yokoyama Y, Fan Q, Iwatani H, Tanaka K, Sakaguchi A, Kanai Y, Zhu J, Takahashi Y (2012) Geochem J 46:297–302CrossRefGoogle Scholar
  29. 29.
    Cremers A, Elsen A, De Preter P, Maes A (1988) Nature 335:247–249CrossRefGoogle Scholar
  30. 30.
    Vidal M, Roig M, Rigol A, Llauradό M, Rauret G, Wauters J, Elsen A, Cremers A (1995) Analyst 120:1785–1791CrossRefGoogle Scholar
  31. 31.
    Smith JT, Beresford NA (2005) Chernobyl—catastrophe and consequences. Springer, ChichesterGoogle Scholar
  32. 32.
    Fan QH, Tanaka M, Tanaka K, Sakaguchi A, Takahashi Y (2014) Geochim Cosmochim Acta 135:49–65Google Scholar
  33. 33.
    Droppo IG (2001) Hydrol Process 15:1551–1564CrossRefGoogle Scholar
  34. 34.
    Digital Japan Web System. (2013) Accessed 24 Sept 2013

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Kazuya Tanaka
    • 1
    Email author
  • Hokuto Iwatani
    • 2
  • Aya Sakaguchi
    • 2
  • Yoshio Takahashi
    • 2
  • Yuichi Onda
    • 3
  1. 1.Institute for Sustainable Sciences and DevelopmentHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of Earth and Planetary Systems Science, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Center for Research in Isotopes and Environmental DynamicsUniversity of TsukubaTsukubaJapan

Personalised recommendations