Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 301, Issue 2, pp 469–474 | Cite as

The synthesis of a new cardiac sympathetic nerve imaging agent N-[11C]CH3-dopamine and biodistribution study

  • Yulin He
  • Weina Zhou
  • Xiangcheng Wang
  • Baoliang Bao
  • Guojian Zhang
  • Cheng Wang
  • Chunmei Wang
  • Xuemei Wang
  • Wei Fang
Article

Abstract

In this study, we synthesized and characterized N-[11C]methyl-dopamine ([11C]MDA) for cardiac sympathetic nerve imaging. [11C]MDA was synthesized by direct N-methylation of dopamine with [11C]methyl iodide and purified by semi-preparation reverse high pressure liquid chromatography (HPLC). The total synthesis time was 45 min including HPLC purification. The radiochemical yields of [11C]MDA was 20 ± 3 %, without decay correction. The radiochemical purity was >98 % and the specific activity was about 50 GBq/mmol. The biological properties of [11C]MDA were evaluated by biodistribution study in normal mice. PET imaging was performed in healthy Chinese mini-swines. Biodistribution study showed that [11C]MDA had high myocardium uptake. PET/CT imaging showed [11C]MDA had clear and symmetrical myocardium uptake, which was blocked obviously by injecting imipramine hydrochloride. [11C]MDA would be a promising candidate of radiotracer for cardiac sympathetic nervous system imaging.

Keywords

N-[11C]CH3-dopamine Myocardial innervation Sympathetic imaging 

Notes

Acknowledgments

This study was supported by Grant from National Natural Science foundation of China (81060019) and Natural Science foundation of Inner Mongolia (2012MS1127 and 2012ZD11) and Natural Science foundation of Inner Mongolia Higher Scientific Research Project (NJZY11124).

References

  1. 1.
    Marwick TH, Schwaiger M (2008) The future of cardiovascular imaging in the diagnosis and management of heart failure, part 2: clinical applications. Circ Cardiovasc imaging 1(2):162–170. doi: 10.1161/circimaging.108.811109 CrossRefGoogle Scholar
  2. 2.
    Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, Hilton J, Nekolla SG, Dong J, Lardo AC, Halperin H, Dannals RF, Marban E, Bengel FM (2008) Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 51(23):2266–2275. doi: 10.1016/j.jacc.2008.02.062 CrossRefGoogle Scholar
  3. 3.
    Tomoda H, Yoshioka K, Shiina Y, Tagawa R, Ide M, Suzuki Y (1994) Regional sympathetic denervation detected by iodine-123 metaiodobenzylguanidine in non-Q-wave myocardial infarction and unstable angina. Am Heart J 128(3):452–458CrossRefGoogle Scholar
  4. 4.
    Huikuri HV, Raatikainen MJ, Moerch-Joergensen R, Hartikainen J, Virtanen V, Boland J, Anttonen O, Hoest N, Boersma LV, Platou ES, Messier MD, Bloch-Thomsen PE (2009) Prediction of fatal or near-fatal cardiac arrhythmia events in patients with depressed left ventricular function after an acute myocardial infarction. Eur Heart J 30(6):689–698. doi: 10.1093/eurheartj/ehn537 CrossRefGoogle Scholar
  5. 5.
    Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ (2008) Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol 15(3):442–455. doi: 10.1016/j.nuclcard.2008.02.023 CrossRefGoogle Scholar
  6. 6.
    Yamashina S, Yamazaki J (2007) Neuronal imaging using SPECT. Eur J Nucl Med Mol Imaging 34(6):939–950. doi: 10.1007/s00259-006-0359-0 CrossRefGoogle Scholar
  7. 7.
    Bengel FM, Schwaiger M (2004) Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol 11(5):603–616. doi: 10.1016/j.nuclcard.2004.06.133 CrossRefGoogle Scholar
  8. 8.
    Lee MR (2011) The history of Ephedra (ma-huang). J R Coll Physicians Edinb 41(1):78–84. doi: 10.4997/jrcpe.2011.116 CrossRefGoogle Scholar
  9. 9.
    Goldstein DS, Eisenhofer G, Dunn BB, Armando I, Lenders J, Grossman E, Holmes C, Kirk KL, Bacharach S, Adams R et al (1993) Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 22(7):1961–1971CrossRefGoogle Scholar
  10. 10.
    Eskola O, Gronroos TJ, Naum A, Marjamaki P, Forsback S, Bergman J, Lankimaki S, Kiss J, Savunen T, Knuuti J, Haaparanta M, Solin O (2012) Novel electrophilic synthesis of 6-[18F]fluorodopamine and comprehensive biological evaluation. Eur J Nucl Med Mol Imaging 39(5):800–810. doi: 10.1007/s00259-011-2032-5 CrossRefGoogle Scholar
  11. 11.
    Eisenhofer G (2001) The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91(1):35–62CrossRefGoogle Scholar
  12. 12.
    Ilias I, Chen CC, Carrasquillo JA, Whatley M, Ling A, Lazurova I, Adams KT, Perera S, Pacak K (2008) Comparison of 6-[18F]fluorodopamine PET with [123I]metaiodobenzylguanidine and [111In]pentetreotide scintigraphy in localization of nonmetastatic and metastatic pheochromocytoma. J Nucl Med 49(10):1613–1619. doi: 10.2967/jnumed.108.052373 CrossRefGoogle Scholar
  13. 13.
    Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, Eisenhofer G, Martiniova L, Adams KT, Pacak K (2009) Comparison of [18F]fluoro-L-DOPA, [18F]fluoro-deoxyglucose, and [18F]fluorodopamine PET and [123I]-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 94(12):4757–4767. doi: 10.1210/jc.2009-1248 CrossRefGoogle Scholar
  14. 14.
    Del Rosario RB, Jung YW, Caraher J, Chakraborty PK, Wieland DM (1996) Synthesis and preliminary evaluation of [11C]-(−)-phenylephrine as a functional heart neuronal PET agent. Nucl Med Biol 23(5):611–616CrossRefGoogle Scholar
  15. 15.
    Raffel DM, Corbett JR, del Rosario RB, Gildersleeve DL, Chiao PC, Schwaiger M, Wieland DM (1996) Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 37(12):1923–1931Google Scholar
  16. 16.
    Chakraborty PK, Gildersleeve DL, Jewett DM, Toorongian SA, Kilbourn MR, Schwaiger M, Wieland DM (1993) High yield synthesis of high specific activity R-(−)-[11C]epinephrine for routine PET studies in humans. Nucl Med Biol 20(8):939–944CrossRefGoogle Scholar
  17. 17.
    Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M (1997) Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 38(5):780–785Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Yulin He
    • 1
  • Weina Zhou
    • 1
  • Xiangcheng Wang
    • 1
  • Baoliang Bao
    • 1
  • Guojian Zhang
    • 1
  • Cheng Wang
    • 1
  • Chunmei Wang
    • 1
  • Xuemei Wang
    • 1
  • Wei Fang
    • 2
  1. 1.Department of Nuclear MedicineAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
  2. 2.Department of Nuclear Medicine, Cardiovascular Institute and Fu Wai HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina

Personalised recommendations