Journal of Radioanalytical and Nuclear Chemistry

, Volume 300, Issue 3, pp 1061–1073 | Cite as

Mass spectrometric analysis of selected radiolyzed amino acids in an astrochemical context

  • Cristina Cherubini
  • Ornella Ursini
  • Franco Cataldo
  • Susana Iglesias-Groth
  • Maria Elisa Crestoni


A selection of amino acids, namely arginine, proline and tyrosine previously irradiated to 3.2 mega-Gray in the solid state and analyzed by differential scanning calorimetry (DSC) and optical rotatory dispersion (ORD) were analyzed in the present work by mass spectrometry with the purpose to identify the radiolysis products and validate the results obtained previously with DSC and ORD. The radiolysis of amino acids is a top-down approach of a research program designed to assess the radiolysis resistance of these molecules for 4.6 × 109 years once buried in primitive bodies of the Solar System.


Amino acids Radiolysis Mass spectrometry Arginine Proline Tyrosine 



We wish to thank Professor G. Angelini for helpful and lively discussion of the results.


  1. 1.
    Miller SL, Oró J (1981) J Mol Evol 17:263CrossRefGoogle Scholar
  2. 2.
    Urey HC (1952) Proc Natl Acad Sci USA 38:351CrossRefGoogle Scholar
  3. 3.
    Urey HC (1955) Proc Natl Acad Sci USA 41:127CrossRefGoogle Scholar
  4. 4.
    Urey HC (1956) Proc Natl Acad Sci USA 42:889CrossRefGoogle Scholar
  5. 5.
    Kohman TP (1997) J Radioanal Nucl Chem 219:165CrossRefGoogle Scholar
  6. 6.
    Cataldo F, Ursini O, Angelini G, Iglesias-Groth S, Manchado A (2011) Rend Fis Acc Lincei 22:81CrossRefGoogle Scholar
  7. 7.
    Cataldo F, Angelini G, Iglesias-Groth S, Manchado A (2010) Radiat Phys Chem 80:57CrossRefGoogle Scholar
  8. 8.
    Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2010) J Radioanal Nucl Chem 287:573CrossRefGoogle Scholar
  9. 9.
    Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2010) J Radioanal Nucl Chem 287:903CrossRefGoogle Scholar
  10. 10.
    Iglesias-Groth S, Cataldo F, Ursini O, Manchado A (2011) Mon Not R Astron Soc 210:1447Google Scholar
  11. 11.
    Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP (2012) Chem Soc Rev 41:5459CrossRefGoogle Scholar
  12. 12.
    Cataldo F, Angelini G, Hafez Y, Iglesias-Groth S (2012) J Radioanal Nucl Chem 295:1235CrossRefGoogle Scholar
  13. 13.
    Cataldo F, Angelini G, Hafez Y, Iglesias-Groth S (2013) Life 3:449CrossRefGoogle Scholar
  14. 14.
    Anders E (1991) Space Sci Rev 56:157CrossRefGoogle Scholar
  15. 15.
    Sephton MA (2002) Nat Prod Rep 19:292CrossRefGoogle Scholar
  16. 16.
    Cronin JR, Pizzarello S (2000) In: Goodfriend GA, Collins MJ, Fogel ML, Macko SA, Wehmiller JF (eds) Chap 2, perspective in amino acid and protein geochemistry. Oxford University Press, OxfordGoogle Scholar
  17. 17.
    Pizzarello S, Cronin JR (2000) Geochim Cosmochim Acta 64:329CrossRefGoogle Scholar
  18. 18.
    Pizzarello S, Huang Y, Alexandre MR (2008) Proc Natl Acad Sci USA 105:3700CrossRefGoogle Scholar
  19. 19.
    Meierhenrich UJ (2008) Amino acids and the asymmetry of life. Springer, BerlinGoogle Scholar
  20. 20.
    Martins Z, Sephton MA (2009) In: Hughes AW (ed) Chapter 1, amino acids, peptides and proteins in organic chemistry. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Pizzarello S, Groy TL (2011) Geochim Cosmochim Acta 75:645CrossRefGoogle Scholar
  22. 22.
    Pizzarello S, Schrader DL, Monroe AA, Lauretta DS (2012) Proc Natl Acad Sci USA 109:11949CrossRefGoogle Scholar
  23. 23.
    Martins Z, Alexander CMO, Orzechowska GE, Fogel MI, Ehrenfreund P (2007) Meteorit Planet Sci 42:2125CrossRefGoogle Scholar
  24. 24.
    Pizzarello S, Shock E (2010) Cold Spring Harb Perspect Biol 2:a00210CrossRefGoogle Scholar
  25. 25.
    Kwok S (2009) Astrophys Space Sci 319:5CrossRefGoogle Scholar
  26. 26.
    Kwok S (2012) Organic matter in the universe. Wiley, WeinheimGoogle Scholar
  27. 27.
    Bonner W, Lemmon RM (1978) J Mol Evol 11:95CrossRefGoogle Scholar
  28. 28.
    Bonner W, Lemmon RM (1987) Bioorg Chem 7:175CrossRefGoogle Scholar
  29. 29.
    Bonner WA, Blair NE, Lemmon RM (1979) Origins Life Evol Biosph 9:279CrossRefGoogle Scholar
  30. 30.
    Bonner W, Liang Y (1984) J Mol Evol 21:84CrossRefGoogle Scholar
  31. 31.
    Bonner WA (1999) Radiat Res 152:83CrossRefGoogle Scholar
  32. 32.
    Kminek G, Bada JL (2006) Earth Planet Sci Lett 245:1CrossRefGoogle Scholar
  33. 33.
    Jennings KR (2000) Int J Mass Spectrom 200:479CrossRefGoogle Scholar
  34. 34.
    Berthold A, Liu Y, Bagwill C, Armstrong DW (1996) J Chromatogr A 731:123CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Cristina Cherubini
    • 1
  • Ornella Ursini
    • 1
  • Franco Cataldo
    • 2
  • Susana Iglesias-Groth
    • 3
  • Maria Elisa Crestoni
    • 4
  1. 1.CNR-Istituto di Metodologie ChimicheMonterotondoItaly
  2. 2.Actinium Chemical Research srlRomeItaly
  3. 3.Instituto de Astrofisica de CanariasTenerifeSpain
  4. 4.Dipartimento di Chimica e Tecnologie del FarmacoUniversità di Roma SapienzaRomeItaly

Personalised recommendations