Journal of Radioanalytical and Nuclear Chemistry

, Volume 300, Issue 3, pp 1151–1158 | Cite as

Preparation of pure TiO2 sorption material

  • I. Špendlíková
  • J. Raindl
  • M. Němec
  • P. Steier
  • P. Mičolová


Determination of 236U/238U at natural ratios using accelerator mass spectrometry (AMS) requires overall purity of each step in the sample preparation procedures which are complex and include various chemicals. Therefore, the simplification of the procedures is desirable and can be done by implementing other effective separation materials. Among the prospective sorption materials, hydrated titanium dioxides showed promising properties for uranium extraction from various water samples. This paper shows the preparation of several titanium based sorption materials using an organic precursor and their characterization with several techniques in order to analyse crystal structure (XRPD, SEM, HRTEM, SAED) and residues of organic compounds (TG analysis and IR spectroscopy) and to quantify their sorption properties towards uranium. The practical sorption capacity of one of the prepared materials was as high as 260 mg of uranium per gram. AMS measurements showed that it is possible to prepare sufficiently pure titanium dioxides for the determination of 236U/238U ratio.


Titanium dioxide Uranium AMS Sorption 



This research has been supported by the Grant Agency of the Czech Technical University in Prague, Grant No. SGS 11/164/OHK4/3T/14, by the MIT CR under Grant No. FR-TI3/245, by the MEYS CR under Grants No. MSM 6840770040, 7AMB12AT022 and CZ14/2012. Special thanks to MSc. Jan Bárta and MSc. Tereza Pavelkova in XRD analyses, to Dr. Jakubec in SEM/TEM analyses, Dr. Martin Vlk in IR analyses and to Drs. Kesner and Pasztor (NICOLET CZ) for special services in IR instrumentation.


  1. 1.
    Steier P, Bichler M, Keith Fifield L, Golser R, Kutschera W, Priller A, Quinto F, Richter S, Srncik M, Terrasi P, Wacker L, Wallner A, Wallner G, Wilcken KM, Wild EM (2008) Nucl Instrum Meth B 266:2246–2250CrossRefGoogle Scholar
  2. 2.
    Quinto F, Steier P, Wallner G, Wallner A, Srncik M, Bichler M, Kutschera W, Terrasi F, Petraglia A, Sabbarese C (2009) Appl Radiat Isotopes 67:1775–1780CrossRefGoogle Scholar
  3. 3.
    Hotchkis MAC, Child D, Fink D, Jacobsen GE, Lee PJ, Mino N, Smith AM, Tuniz C (2000) Nucl Instrum Meth B 172:659–665CrossRefGoogle Scholar
  4. 4.
    Vockenhuber C, Ahmad I, Golser R, Kutschera W, Liechtenstein V, Priller A, Steier P, Winkler S (2003) Int J Mass Spectrom 223–224:713–714CrossRefGoogle Scholar
  5. 5.
    Buchholz BA, Brown TA, Hamilton TF, Hutcheon ID, Marchetti AA, Martinelli RE, Ramon EC, Tumey SJ, Williams RW (2007) Nucl Instrum Meth B 259:733–738CrossRefGoogle Scholar
  6. 6.
    Lee SH, Povinec PP, Wyse E, Hotchkis MAC (2008) Appl Radiat Isotopes 66:823–828CrossRefGoogle Scholar
  7. 7.
    Srncik M, Steier P, Wallner G (2010) Nucl Instrum Meth B 268:1146–1149CrossRefGoogle Scholar
  8. 8.
    Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D (2013) Sep Sci Technol 48:367–387CrossRefGoogle Scholar
  9. 9.
    Rao L (2011) Recent international R&D activities in the extraction of uranium from seawater. Lawrence Berkeley National Laboratory, BerkeleyGoogle Scholar
  10. 10.
    Lehto J, Clearfield A (1987) J Radioanal Nucl Chem 118:1–13CrossRefGoogle Scholar
  11. 11.
    Crisan M, Braileanu A, Raileanu M, Crisan D, Teodorescu VS, Birjega R, Marinescu VE, Madarasz J, Pokol G (2007) J Therm Anal Calorim 88:171–176CrossRefGoogle Scholar
  12. 12.
    Valencia S, Vargas X, Rios L, Restrepo G, Marín JM (2013) J Photoch Photobio A 251:175–181CrossRefGoogle Scholar
  13. 13.
    Abe M (1982) In: Clearfield A (ed) Inorganic ion exchange materials. CRC Press, FloridaGoogle Scholar
  14. 14.
    Weiser HB, Milligan WO (1933) J Phys Chem US 38:513–519CrossRefGoogle Scholar
  15. 15.
    Comamrmond MJ, Payne TE, Harrison JJ, Thiruvoth S, Wong HK, Aughterson RD, Lumpkin GR, Muller K, Foerstendorf H (2011) Environ Sci Technol 45:5536–5542CrossRefGoogle Scholar
  16. 16.
    Venkataramani B, Gupta AR (1991) Coll Surf 53:1–19CrossRefGoogle Scholar
  17. 17.
    McNulty GS (2008) Production of titanium dioxide. In: Proceedings NORM V 2007, IAEA, Vienna, p 169–188Google Scholar
  18. 18.
    Navrátil V (1998) Decin CZT-HG exploration, drilled well DC6. AQUATEST—Stavební geologie a.s. Prague (in Czech)Google Scholar
  19. 19.
    Popelova A (2001) A study of radionuclides extraction from aqueous systems after degradation of organic complexants. Dissertation thesis, CTU in PragueGoogle Scholar
  20. 20.
    Steier P, Dellinger F, Forstner O, Golser R, Knie K, Kutschera W, Priller A, Quinto F, Srncik M, Terrasi F, Vockenhuber C, Wallner A, Wallner G, Wild EM (2010) Nucl Instrum Meth B 268:1045–1049CrossRefGoogle Scholar
  21. 21.
    Motl A, Šebesta F, John J, Ndiaye I, Němec M, Špendlíková I (2013) J Radioanal Nucl Chem 298:2057–2063Google Scholar
  22. 22.
    Steier P, Golser R, Kutschera W, Liechtenstein V, Priller A, Valenta A, Vockenhuber C (2002) Nucl Instrum Meth B 188:283–287CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • I. Špendlíková
    • 1
  • J. Raindl
    • 1
  • M. Němec
    • 1
  • P. Steier
    • 2
  • P. Mičolová
    • 1
  1. 1.Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 1Czech Republic
  2. 2.Faculty of Physics, Isotope Research and Nuclear PhysicsUniversity of ViennaViennaAustria

Personalised recommendations