Investigations of actinides in the context of final disposal of high-level radioactive waste: trivalent actinides in aqueous solution

  • Nidhu L. Banik
  • Boris Brendebach
  • Christian M. Marquardt


The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV–Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0–2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future.


Actinides Trivalent Redox Stabilization Spectroscopy 



This work was partly financed by The Federal Ministry of Economics and Technology (Germany) and the European Network of Excellence in Actinide Science (ACTINET).


  1. 1.
    OECD, NEA (1999) Status and assessment report on actinide and fission product partitioning and transmutation, ParisGoogle Scholar
  2. 2.
    Barnard R, Bullock JI, Gellatly BI, Larkworthy LF (1973) J Chem Soc-Dalton Trans 6:604–607CrossRefGoogle Scholar
  3. 3.
    Butler RJ, Sinkov S, Renshaw JC, Collison D, Livens FR, Taylor RJ, Choppin GR (2000) ATALANTE2000, October 24Google Scholar
  4. 4.
    Carrott MJ, Fox OD, LeGurun G, Jones CJ, Mason C, Taylor RJ, Andrieux FPL, Boxall C (2008) Radiochim Acta 96:333–344CrossRefGoogle Scholar
  5. 5.
    Cohen D, Carnall WT (1960) J Inorg Nucl Chem 64:1933–1936Google Scholar
  6. 6.
    Cohen D (1961) J Inorg Nucl Chem 18:207–210CrossRefGoogle Scholar
  7. 7.
    Droczdzynski J (1978) J Inorg Nucl Chem 40:319–323CrossRefGoogle Scholar
  8. 8.
    Gel’man AD, Mefod’eva MP (1958) Sov J Energy 4:361–364Google Scholar
  9. 9.
    Hagan PG, Cleveland JM (1966) J Inorg Nucl Chem 28:2905CrossRefGoogle Scholar
  10. 10.
    Heal HG (1946) Nature 157:225CrossRefGoogle Scholar
  11. 11.
    Heal HG (1949) Trans Faraday Soc 45:1–11CrossRefGoogle Scholar
  12. 12.
    Kennedy JH (1960) Anal Chem 32:150–152CrossRefGoogle Scholar
  13. 13.
    Kritchevsky ES, Hindman JC (1949) J Am Chem Soc 71:2096–2102CrossRefGoogle Scholar
  14. 14.
    Krot NN, Mefod’eva MP (1974) Russ Chem Bull 23:2052–2054CrossRefGoogle Scholar
  15. 15.
    Kulyukhin SA, Mikheev NB, Kamenskaya AN, Konovalova NA, Rumer IA (2006) Radiochem 48:535–551CrossRefGoogle Scholar
  16. 16.
    Mao JJ, Zhou ZM, Qin QZ (1991) J Radioanal Nucl Chem 147:277–285CrossRefGoogle Scholar
  17. 17.
    Peretrukhin VF, Krot NN, Gel’man AD (1970) Sov Radiochem 12:81–84Google Scholar
  18. 18.
    Peretrukhin VF, Krot NN, Gel’man AD (1970) Sov Radiochem 12:85–88Google Scholar
  19. 19.
    Sato A (1967) Bull Chem Soc Jap 40:2107–2109CrossRefGoogle Scholar
  20. 20.
    Jun MJ, Zuming Z, Qizong Q (1991) Radioanal Nucl Chem 147:227–231Google Scholar
  21. 21.
    Shiloh M, Marcus Y (1965) Israel J Chem 3:123–125CrossRefGoogle Scholar
  22. 22.
    Shiloh M, Marcus Y (1966) J Inorg Nucl Chem 28:2725–2732CrossRefGoogle Scholar
  23. 23.
    Yusov A, Shilov V, Peretrukhin V, Fedoseev A (2007) Radiochemistry 49:1–13CrossRefGoogle Scholar
  24. 24.
    Antonio MR, Soderholm L, Williams CW, Blaudeau JP, Bursten BE (2001) Radiochim Acta 89:17–25CrossRefGoogle Scholar
  25. 25.
    Geist A, Banik NL (2013) Private communicationGoogle Scholar
  26. 26.
    Gong CMS, Lukens WW, Poineau F, Czerwinski KR (2008) Inorg Chem 47:6674–6680CrossRefGoogle Scholar
  27. 27.
    Taylor RJ, May I (1999) Czech J Phys 49:617CrossRefGoogle Scholar
  28. 28.
    Yarbro SL, Schreiber SB, Ortiz EM, Ames RL (1998) J Radioanal Nucl Chem 235:21–24CrossRefGoogle Scholar
  29. 29.
    Rothe J, Denecke MA, Dardenne K, Fanghänel Th (2006) Radiochim Acta 94:691–696CrossRefGoogle Scholar
  30. 30.
    Bearden JA, Burr AF (1967) Rev Mod Phys 39:125–142CrossRefGoogle Scholar
  31. 31.
    Ravel B, Newville M (2005) J Synchr Rad 12:537–541CrossRefGoogle Scholar
  32. 32.
    Budanov VV (2002) Russ J Coord Chem 28:294–300Google Scholar
  33. 33.
    Brendebach B, Banik NL, Marquardt CM, Denecke MA, Geckeis H (2009) Radiochim Acta 12:701–708Google Scholar
  34. 34.
    Nästren C, Jardin R, Somers J, Walter M, Brendebach B (2009) J Solid State Chem 182:1–7CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Nidhu L. Banik
    • 1
  • Boris Brendebach
    • 1
  • Christian M. Marquardt
    • 1
  1. 1.Institute for Nuclear Waste Disposal (INE)Karlsruher Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations