Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 3, pp 1907–1911 | Cite as

Application of INAA for investigation of magnesium and aluminium oxide materials

  • Daina Riekstina
  • Vera Skvortsova
  • Olgerts Veveris
Article

Abstract

The paper presents investigations of changes in optical absorption and photo luminescence spectra of magnesium oxide, and natural and synthetic magnesium aluminium spinel related with the content of transition metal ions (Cr, Fe, Mn) and the irradiation with fast neutrons. Six synthetic single magnesium aluminium spinel crystals with different stoichiometry (MgO·nAl2O3), five natural crystals from Ural and Pamir deposits, and seven MgO crystals were studied. Micro impurities (Cr, Fe, and Mn) and macro component (Mg, Al) quantities have been determined using the instrumental neutron activation analysis technique. Concentrations of impurities in different spinels were found in following ranges: for Cr—1 × 10−4 to 8 × 10−2 %, for Mn—2 × 10−5 to 23 %, for Fe—1 × 10−4 to 1.2 %. Three ranges of luminescence: 380–460, 650–850 and 850–1,050 nm, were established in the most part of the investigated MgO samples. Analysis shows that the intensity of emission in each of these regions is strongly dependent on the concentration of transition metal ions. Great deviation from the stoichiometry of the irradiated MgO·2.8Al2O3 crystal leads to the local structure of α-Al2O3 formation around Cr3+ ions. The orange emission is attributed to Mn2+ in octahedral coordination, it can be assumed that the band at 570 nm is belonging to the complex centre “Mn2+–F+ (or F centre)”.

Keywords

INAA Transition metal impurities Magnesium oxide Magnesium aluminum spinel Optical properties 

References

  1. 1.
    Dolgov S, Karner T, Lushchik A, Maaros A, Mironova-Ulmane N, Nakonechnyi S (2002) Radiation Prot Dosim 100:127–132CrossRefGoogle Scholar
  2. 2.
    Kvachadze V, Dekanozishvili G, Vylet V, Galustashvili MG, Akhvlediani Z, Keratishvili N, Zardiashvili D (2007) Radiat Eff Defec Solids 162:17–24CrossRefGoogle Scholar
  3. 3.
    Gusmano G, Montesperelli G, Traversa E, Mattogno G (1993) J Am Ceram Soc 76:743–750CrossRefGoogle Scholar
  4. 4.
    Wang CC (1969) J Appl Phys 40:3433–3444CrossRefGoogle Scholar
  5. 5.
    Petermann K, Clausen R, Heumann E, Ledig M (1989) Opt Commun 70:483–486CrossRefGoogle Scholar
  6. 6.
    Jouini A, Yoshikawa A, Brenier A, Fukuda T, Boulon G (2007) Phys Stat Sol (c) 3:1380–1383CrossRefGoogle Scholar
  7. 7.
    Goulding RH, Zinkle SJ, Rasmussen DA, Stoller RE (1996) J Appl Phys 79:2920–2933CrossRefGoogle Scholar
  8. 8.
    Oliveira Neto FF, Souza SS, Blak AR (1999) Rad Prot Dosim 84:139–142CrossRefGoogle Scholar
  9. 9.
    Kazarinov YG, Gritsyna VT, Kobyakov VA, Sickafus KE (2002) Voprosi Atomnoi nauki i tehniki 83:53–57 (in Russian)Google Scholar
  10. 10.
    Okada M, Kawakubo T, Seiyama T, Nakagawa M (1987) Phys stat sol (b) 144:903–908CrossRefGoogle Scholar
  11. 11.
    Hilbrandt N, Martin MJ (1999) Phys Chem B 103:4797–4802CrossRefGoogle Scholar
  12. 12.
    Pascual JL, Savoini B, Gonzales R (2004) Phys Rev B 70:045109-1–045109-7CrossRefGoogle Scholar
  13. 13.
    Nakatsuka A, Ueno H, Nakayama N, Mizota T, Maekawa H (2004) Phys Chem Miner 31:278–287CrossRefGoogle Scholar
  14. 14.
    General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2008)Google Scholar
  15. 15.
    Mironova N, Ulmanis U (1988) Radiation defects and iron group metal ions in oxides Zinatne, Riga (in Russian)Google Scholar
  16. 16.
    Soshea RW, Dekker AJ, Sturtz JP (1958) J Phys Chem Solids 5:23–26CrossRefGoogle Scholar
  17. 17.
    Mironova NA, Rychkova SV, Skvortsova VN, Riekstinya DV (1987) Latv PSR Zinatnu Akad Vestis, Fiz tehn zin ser 3:36–40 (in Russian)Google Scholar
  18. 18.
    O`Neill MB, Gibson PN, Henderson B (1988) J Lumin 42:235–243CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Daina Riekstina
    • 1
  • Vera Skvortsova
    • 1
  • Olgerts Veveris
    • 1
  1. 1.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations