Journal of Radioanalytical and Nuclear Chemistry

, Volume 299, Issue 1, pp 569–575 | Cite as

Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite

  • Shuji Tamamura
  • Takahiro Takada
  • Junpei Tomita
  • Seiya Nagao
  • Keisuke Fukushi
  • Masayoshi Yamamoto


The effect of NaCl concentration (10.0–1,000 mM) on 226Ra adsorption was investigated in the presence of montmorillonite and kaolinite. A positive correlation was observed between the dissolved 226Ra and NaCl concentrations in the presence of these adsorbents. Distribution coefficients decreased from the order of 104 to 100 (mL g−1) with an increase in NaCl concentration. Although the coefficients were higher for montmorillonite than kaolinite at lower NaCl concentrations, the trend was reversed at higher NaCl concentrations (≥500 mM) owing to the sharper reduction of the coefficient for montmorillonite with the increase in NaCl concentration. The rapid reduction was ascribed to higher negative charge density of montmorillonite, which leads the Ra2+ adsorption mechanism to approach charge-compensating ion exchange.


Radium Adsorption Montmorillonite Kaolinite Salinity Distribution coefficient 



We thank M. Fuchizaki, Kanazawa University, for the XRD spectral measurements. T. Murakami, Kanazawa University, is acknowledged for valuable comments in the interpretation of the experimental results.


  1. 1.
    Gascoyne M (1989) High levels of uranium and radium in groundwaters at Canada’s Underground Research Laboratory, Lac du Bonnet, Manitoba, Canada. Appl Geochem 4:577–591CrossRefGoogle Scholar
  2. 2.
    Minster T, Ilani S, Kronfeld J, Even O, Godfrey-Smith DI (2004) Radium contamination in the Nizzana-1 water well, Negev Desert, Israel. J Environ Radioact 71:261–273CrossRefGoogle Scholar
  3. 3.
    Vengosh A, Hirschfeld D, Vinson D, Dwyer G, Raanan H, Rimawi O, Al-Zoubi A, Akkawi E, Marie A, Haquin G, Zaarur S, Canor J (2009) High naturally occurring radioactivity in fossil groundwater from the Middle East. Environ Sci Technol 43:1769–1775CrossRefGoogle Scholar
  4. 4.
    Vinson DS, Vengosh A, Hirschfeld D, Dwyer GS (2009) Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem Geol 260:159–171CrossRefGoogle Scholar
  5. 5.
    Ames LL, McGarrah JE, Walker BA (1983) Sorption of trace constituents from aqueous solutions onto secondary minerals. II. Radium. Clay Clay Miner 31:335–342CrossRefGoogle Scholar
  6. 6.
    Chalupnik S, Michalik B, Wysocka M, Skubacz K, Mielnikow A (2001) Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines. J Environ Radioact 54:85–98CrossRefGoogle Scholar
  7. 7.
    Krishnaswami S, Graustein WC, Turekian KK (1982) Radium, thorium and radioactive lead isotopes in groundwaters: application to the in situ determination of adsorption-desorption rate constants and retardation factors. Water Resour Res 18:1633–1675CrossRefGoogle Scholar
  8. 8.
    Langmuir D, Riese AC (1985) The thermodynamic properties of radium. Geochim Cosmochim Acta 49:1593–1601CrossRefGoogle Scholar
  9. 9.
    Herczeg AL, Simpson HJ, Anderson RF, Trier RM, Mathieu GG, Deck BL (1988) Uranium and radium mobility in groundwaters and brines within the Delaware Basin, southeastern New Mexico, U.S.A. Chem Geol (Isot Geosci Sect) 72:181–196Google Scholar
  10. 10.
    Krishnaswami S, Bhushan R, Baskaran M (1991) Radium isotopes and 222Rn in shallow brines, Kharaghoda (India). Chem Geol (Isot Geosci Sect) 87:125–136CrossRefGoogle Scholar
  11. 11.
    Hidaka H, Horie K, Gauthier-Lafaye F (2007) Transport and selective uptake of radium into natural clay minerals. Earth Planet Sci Lett 264:167–176CrossRefGoogle Scholar
  12. 12.
    Kraemer TF, Reid DF (1984) The occurrence and behavior of radium in saline formation water of the U.S. gulf coast region. Chem Geol (Isot Geosc) 2:153–174Google Scholar
  13. 13.
    Moise T, Starinsky A, Katz A, Kolodny Y (2000) Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Rift Valley: enrichment, retardation, and mixing. Geochim Cosmochim Acta 64:2371–2388CrossRefGoogle Scholar
  14. 14.
    Sturchio NC, Banner JL, Binz CM, Heraty LB, Musgrove M (2001) Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA. Appl Geochem 16:109–122CrossRefGoogle Scholar
  15. 15.
    Tomita J, Satake H, Sasaki K, Sakaguchi A, Inoue M, Hamajima Y, Yamamoto M (2009) Radium isotope in Na-Cl type saline waters from deep wells around coastal area in Ishikawa Prefecture, Japan. J Hot Spring Sci 58:241–255 (in Japanese with English abstract)Google Scholar
  16. 16.
    Tomita J, Satake H, Fukuyama T, Sasaki K, Sakaguchi A, Yamamoto M (2010) Radium geochemistry in Na-Cl type groundwater in Niigata Prefecture, Japan. J Environ Radioact 101:201–210CrossRefGoogle Scholar
  17. 17.
    Dickson BL (1985) Radium isotopes in saline seepages, south-western Yilgarn, Western Australia. Geochim Cosmochim Acta 49:361–368CrossRefGoogle Scholar
  18. 18.
    Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Englewood CliffsGoogle Scholar
  19. 19.
    Beneš P, Borovec Z, Strejc P (1985) Interaction of radium with freshwater sediments and their mineral components. II. Kaolinite and montmorillonite. J Radioanal Nucl Chem 89:339–351CrossRefGoogle Scholar
  20. 20.
    Beneš P, Borovec Z, Strejc P (1986) Interaction of radium with freshwater sediments and their mineral components. III. Muscovite and feldsper. J Radioanal Nucl Chem 98:91–103CrossRefGoogle Scholar
  21. 21.
    Wang RS, Chau ASY, Flu F, Cheng H, Nar P, Chen XM, Wu QY (1993) Studies on the adsorption and migration of radium in natural minerals. J Radioanal Nucl Chem 171:347–364CrossRefGoogle Scholar
  22. 22.
    Komarneni S, Kozai N, Paulus WJ (2001) Superselective clay for radium uptake. Nature 410:771CrossRefGoogle Scholar
  23. 23.
    Tachi Y, Shibutani T, Sato H, Yui M (2001) Experimental and modeling studies on sorption and diffusion of radium in bentonite. J Contam Hydrol 47:171–186CrossRefGoogle Scholar
  24. 24.
    Velde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Shirozu H (1988) Introduction to clay mineralogy -fundamentals for clay science-. Asakura, TokyoGoogle Scholar
  26. 26.
    Beneš P, Strejc P, Lukavec Z (1984) Interaction of radium with freshwater sediments and their mineral components. I J Radioanal Nucl Chem 82:275–285CrossRefGoogle Scholar
  27. 27.
    Webster IT, Hancock GJ, Murray AS (1995) Modelling the effect of salinity on radium desorption from sediments. Geochim Cosmochim Acta 59:2469–2476CrossRefGoogle Scholar
  28. 28.
    Drever JI (1997) The geochemistry of natural waters, 3rd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  29. 29.
    Lagaly G (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Elsevier, OxfordGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Shuji Tamamura
    • 1
    • 3
  • Takahiro Takada
    • 1
  • Junpei Tomita
    • 1
    • 4
  • Seiya Nagao
    • 1
  • Keisuke Fukushi
    • 2
  • Masayoshi Yamamoto
    • 1
  1. 1.Low Level Radioactivity Laboratory, INETKanazawa UniversityNomiJapan
  2. 2.Institute of Nature and Environmental TechnologyKanazawa UniversityKanazawaJapan
  3. 3.Horonobe Research Institute for the Subsurface EnvironmentTeshio-gunJapan
  4. 4.Japan Atomic Energy AgencyNaka-gunJapan

Personalised recommendations