Journal of Radioanalytical and Nuclear Chemistry

, Volume 299, Issue 1, pp 855–860 | Cite as

Radionuclides from Fukushima accident in Thessaloniki, Greece (40°N) and Milano, Italy (45°)

  • A. Ioannidou
  • E. M. Manolopoulou
  • S. Stoulos
  • E. Vagena
  • C. Papastefanou
  • M. L. Bonardi
  • L. Gini
  • S. Manenti
  • F. Groppi


131I, 137Cs and 134Cs were observed in environmental samples in Milano (40°N), Italy and Thessaloniki (45°N), Greece, soon after the nuclear accident in Fukushima, Japan. The radionuclide concentrations were determined and studied as a function of time. In Thessaloniki the 131I in air was observed for the first time on March 24, 2011. In Milano, the first evidence of Fukushima fallout has been confirmed with 131I and 137Cs measured in wet precipitation collected 2 days later. The maximum 131I activity concentration in air of 467 ± 25 μBq m−3, observed in Milano on April 3–4, 2011, was almost similar to the highest value of 497 ± 53 μBq m−3 observed in Thessaloniki. The 134Cs/137Cs activity ratio values in air were around 1 in both regions. Soil, grass and milk samples were contaminated with 131I and 137Cs at a low level. Finally, a dose assessment for these two areas showed clearly that the detected activities in all environmental samples were far below levels of concern.


Nuclear accident Fukushima accident Radioactive nuclides Radioactive fallout 


  1. 1.
    IAEA, 02 June 2011. Fukushima Nuclear Accident Update Log.
  2. 2.
    Bolsunovsky A, Dementyev D (2011) Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima nuclear accident. J Environ Radioact 102:1062–1064CrossRefGoogle Scholar
  3. 3.
    Bowyer TW, Biegalski SR, Cooper M, Eslinger PW, Haas D, Hayes JC, Miley HS, Strom DJ, Woods V (2011) Elevated radioxenon detected remotely following the Fukushima nuclear accident. J Environ Radioact 102(7):681–687CrossRefGoogle Scholar
  4. 4.
    Clemenza M, Fiorini E, Previtali E, Sala E (2012) Measurement of airborne 131I, 134Cs and 137Cs due to the Fukushima reactor incident in Milan (Italy). J Environ Radioact 114:113–118CrossRefGoogle Scholar
  5. 5.
    Diaz LJ, Jaffe DA, Kaspar J, Knecht A, Miller ML, Robertson RGH, Schubert AG (2011) Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J Environ Radioact 102(11):1032–1038CrossRefGoogle Scholar
  6. 6.
    Lozano RL, Hernández-Ceballos MA, Adame JA, Casas-Ruíz M, Sorribas M, San Miguel EG, Bolívar JP (2011) Radioactive impact of Fukushima accident on the Iberian Peninsula: evolution and plume previous pathway. Environ Int 37:1259–1264CrossRefGoogle Scholar
  7. 7.
    Lujanienė G, Byčenkienė S, Ščiglo T, Gera M, Bartok J, Gažák M (2011) Radionuclides from the Fukushima Accident in Europe—Modelling the Air Mass Transport. In: Proceedings FSKD 2011, vol 4, 26–28 July, 2011, Shanghai, China, 2775–2777Google Scholar
  8. 8.
    Manolopoulou M, Vagena E, Stoulos S, Ioannidou A, Papastefanou C (2011) Radioiodine and radiocaesium in Thessaloniki, Northern Greece, due to the Fukushima nuclear accident. J Environ Radioact 102(8):796–797CrossRefGoogle Scholar
  9. 9.
    Masson O et al (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors be European networks. Environ Sci Technol 45:7670–7677CrossRefGoogle Scholar
  10. 10.
    Paatero J, Vira J, Siitari-Kauppi M, Hatakka J, Holmen K, Viisanen Y (2012) Airborne fission products in the high Arctic after the Fukushima nuclear accident. J Environ Radioact 114:41–47CrossRefGoogle Scholar
  11. 11.
    Pittauerová D, Hettwig B, Fischer HW (2011) Fukushima fallout in Northwest German environmental media. J Environ Radioact 102(9):877–880CrossRefGoogle Scholar
  12. 12.
    Povinec PP, Sýkora I, Holý K, Gera M, Kováčik A, Brest’áková L (2012) Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident—A comparison with global fallout and the Chernobyl accident. J Environ Radioact 114:81–88CrossRefGoogle Scholar
  13. 13.
    Tositti L, Brattich E, Cinelli G, Previti A, Mostacci D (2012) Comparison of radioactivity data measured in PM10 aerosol samples at two elevated stations in northern Italy during the Fukushima event. J Environ Radioact 114:105–112CrossRefGoogle Scholar
  14. 14.
    Arctic Monitoring and Assessment Programme (AMAP 2010), AMAP Assessment 2009: Radioactivity in the Arctic, Oslo, Norway, pp 2829, ISBN 13 9788279710592Google Scholar
  15. 15.
    Masson O, Piga D, Gurriaran R, D’Amico D (2010) Impact of an exceptional Saharan dust outbreak in France: PM10 and artificial radionuclides concentrations in air and in dust deposit. Atmos Environ 44:2478–2486CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Ioannidou A, Papastefanou C (2006) Precipitation scavenging of 7Be and 137Cs radionuclides in air. J Environ Radioact 85:121–136CrossRefGoogle Scholar
  18. 18.
    Ioannidou A, Manenti S, Luigi G, Groppi F (2012) Fukushima fallout at Milano, Italy. J Environ Radiaoct 114:119–125CrossRefGoogle Scholar
  19. 19.
    Manolopoulou M, Stoulos S, Ioannidou A, Vagena E, Papastefanou C (2012) Radiation measurements and radioecological aspects of fallout from the Fukushima nuclear accident. J Radioanal Nucl Chem 292(1):155–159CrossRefGoogle Scholar
  20. 20.
    Firestone RB, Baglin CM, Chu SYF (1999) Table of Isotopes: 1999 Update on CD-ROM, 1999 Update, 8th Edition. Wiley-InterscienceGoogle Scholar
  21. 21.
    Gilmore GR (2008) Practical Gamma-ray Spectrometry, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  22. 22.
    KEK (2011) KEK High Energy accelerator Research Organization, Measurement result of airborne nuclide and air radiation level in Tsukumba area (Japan): 3rd Report. 28 March, 2011. KEK.JPGoogle Scholar
  23. 23.
    Kirchner G, Bossew P, De Cort M (2012) Radioactivity from Fukushima Dai-ichi in air over Europe; part 2: what can it tell us about the accident? J Environ Radioact 114:35–40CrossRefGoogle Scholar
  24. 24.
    IAEA (2006) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. RARS, ViennaGoogle Scholar
  25. 25.
    Paatero J, Hämeri K, Jaakkola T, Jantunen M, Koivukoski J, Saxén R (2010) Airborne and deposited radioactivity from the Chernobyl accident—a review of Investigations in Finland. Boreal Environ Res 15:19–33Google Scholar
  26. 26.
    Povinec P, Chudý M, Sýkora I, Szarka J, Pikna M, Holý K (1988) Aerosol radioactivity monitoring in Bratislava following the Cheernobyl accident. J Radioanal Nucl Chem Lett 126:467–478CrossRefGoogle Scholar
  27. 27.
    Kritidis P, Florou H, Elrftheriadis K, Evangelou N, Gini M, Sotiropoulou M, Diapouli E, Vratolis S (2012) Radiactive pollution in Athens, Greece due to the Fukushima nuclear accident. J Environ Radioact 114:100–104CrossRefGoogle Scholar
  28. 28.
    Lujaniene G, Byčenkienė S, Povinec PP, Gera M (2012) Radionuclides from the Fukushima Accident in the air over Lithuania: measurement and modeling approaches. J Environ Radioact 114:71–80CrossRefGoogle Scholar
  29. 29.
    GAEC (2011) Greek Atomic Energy Commission, Aghia Parakevi, 2011, Athens GR-15310. Bulletin 13 April 2011.
  30. 30.
    Potiriadis C, Kolovou M, Clouvas A, Xanthos S (2011) Environmental radioactivity measurements in Greece following the Fukushima Daichi nuclear accident. Rad Prot Dosimetry 150:441–447. doi: 10.1093/rpd/ncr423 CrossRefGoogle Scholar
  31. 31.
    Povinec PP, Sýkora I, Gera M, Holý K, Brest’áková L, KováčiK A (2013) Fukushima-derived radionuclides in ground-level air of Central Europe: a comparison with simulated forward and backward trajectories. J Radioanal Nucl Chem 295:1171–1176CrossRefGoogle Scholar
  32. 32.
    ATSDR (2011) Agency for Toxic Substances and Disease Registry
  33. 33.
    MEXT, Ministry of Education, Culture, Sports, Science and Technologie, Japan.
  34. 34.
    IRSN (2011) IRSN, Institut de Radioprotection et de Surete Nucleaire, Assessment on the 66th day of projected external doses from the nuclear accident in Fukushima, Report DRPH/2011-010, 27.05.2011Google Scholar
  35. 35.
    UNSCEAR 2000 United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation, New York, United NationsGoogle Scholar
  36. 36.
    Italian Government Legislative Decree n. 230 March 17 1995, as modified by D. Lgs. May 26 2000, n. 241 and May 9, 2001, n. 257—Implementation of Directives 89/618/Euratom, 90/641/Euratom 92/3/Euratom and 96/29/Euratom on ionizing radiationGoogle Scholar
  37. 37.
    NCRP 1996 Screening models for releases of radionuclides to atmosphere, surface water and ground, Recommendations of the National Council on Radiation Protection and Measurements, J REPORT No. 123 an 22, 1996Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • A. Ioannidou
    • 1
    • 2
  • E. M. Manolopoulou
    • 1
  • S. Stoulos
    • 1
  • E. Vagena
    • 1
  • C. Papastefanou
    • 1
  • M. L. Bonardi
    • 2
  • L. Gini
    • 2
  • S. Manenti
    • 2
    • 3
  • F. Groppi
    • 2
  1. 1.Nuclear Physics LaboratoryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.LASA LaboratoryUniversità degli Studi di Milano and INFNSegrateItaly
  3. 3.Physics DepartmentUniversità di FerraraFerraraItaly

Personalised recommendations