Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 3, pp 1605–1611 | Cite as

On the design and installation of a Compton–suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility

  • László SzentmiklósiEmail author
  • Zoltán Kis
  • Tamás Belgya
  • Andrey N. Berlizov
Article

Abstract

An important aspect of the ongoing upgrade at the Budapest PGAA-NIPS facility has been the design and installation of a second Compton-suppressed gamma spectrometer. The aim was to provide excellent spectroscopic conditions for future position sensitive and large sample prompt gamma activation analysis applications. The optimum geometry of the setup was determined by Monte Carlo calculations with the MCNP-CP code. The suppression factors for various layouts (co-axial, perpendicular), shapes (cylindrical, tapered), and thicknesses were compared at different gamma-ray energies. The optimum configuration, as a trade-off between performance and cost, was selected, purchased, and installed. Several characteristic features of a collimated, Compton-suppressed system could be revealed, which allowed us to achieve a better and cost-effective performance. The calculations were validated with a 14N(n,γ)15N calibration source.

Keywords

Prompt gamma activation analysis (PGAA) Neutron induced prompt gamma spectrometry (NIPS) Compton suppression HPGe gamma-ray detector Anti-coincidence Monte Carlo simulation MCNP–CP 

Notes

Acknowledgments

The authors acknowledge the financial support of the NAP VENEUS 08 project (Contract No. OMFB-00184/2006) and the technical help of Kálmán Takács. Certain commercial equipment, instruments, software or materials are identified in this paper in order to specify the experimental procedures in adequate detail. This identification does not imply that the equipment or materials identified are necessarily the best available for the purpose.

References

  1. 1.
    Molnár GL (ed) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht/Boston/New YorkGoogle Scholar
  2. 2.
    Hunt GJ, O’Riordan MC, Whetmath PDJ (1973) Nucl Instr Methods 156:573CrossRefGoogle Scholar
  3. 3.
    Peerani P, Carbo P, Hrnecek E, Betti M (2002) Nucl Instr Methods A 482:42. doi: 10.1016/S0168-9002(01)01677-1 CrossRefGoogle Scholar
  4. 4.
    Szentmiklósi L, Belgya T, Révay ZS, Kis Z (2010) J Radioanal Nucl Chem 286:501. doi: 10.1007/s10967-010-0765-4 CrossRefGoogle Scholar
  5. 5.
    Michel C, Emling H, Grosse E, Azgui F, Grein H, Wollersheim HJ, Gaardhoje JJ, Herskind B (1986) Nucl Instr Methods A 251:119. doi: 10.1016/0168-9002(86)91158-7 CrossRefGoogle Scholar
  6. 6.
    Kiang LL, Tsou RH, Li JH, Lin SC, Lo C-Y, Kiang GC, Teng PK (1995) Nucl Instr Methods A 355:434. doi: 10.1016/0168-9002(94)01109-5 CrossRefGoogle Scholar
  7. 7.
    Avignone FT III (1980) Nucl Instr Methods 174:555. doi: 10.1016/0029-554X(80)91110-6 CrossRefGoogle Scholar
  8. 8.
    Park CS, Sun GM, Choi HD (2003) J Korean Nucl Soc 35:234Google Scholar
  9. 9.
    Berlizov AN (2006) MCNP-CP, a correlated particle radiation source extension of a general purpose Monte Carlo N particle transport code. In: Semkov TM, Pommé S, Jerome SM (eds) ACS symposium series 945. American Chemical Society, Washington DC, pp 183–194. doi: 10.1021/bk-2007-0945.ch013 Google Scholar
  10. 10.
    J.F.Briesmeister et al. (1997) MCNP—a general Monte Carlo N-particle transport code. Los Alamos National Laboratory Report LA-12625-MGoogle Scholar
  11. 11.
    Szentmiklósi L, Berlizov AN (2009) Nucl Instr Methods A 612:122–126. doi: 10.1016/j.nima.2009.09.127 CrossRefGoogle Scholar
  12. 12.
    Canella L, Kudejova P, Schulze R, Türler A, Jolie J (2011) Nucl Instr Methods A 636:108. doi: 10.1016/j.nima.2011.01.126 CrossRefGoogle Scholar
  13. 13.
    Crittin M, Kern J, Schenker J-L (2000) Nucl Instr Methods A 449:221–236. doi: 10.1016/S0168-9002(99)01467-9 CrossRefGoogle Scholar
  14. 14.
    Cho H-J, Chung Y-S, Kim Y-J (2005) Nucl. Instr Methods B 229:499. doi: 10.1016/j.nimb.2004.12.124 CrossRefGoogle Scholar
  15. 15.
    T. Belgya, Zs Révay, B Fazekas, I Héjja, L Dabolczi, GL Molnár (1997) The new Budapest capture gamma-ray facility. In: GL Molnár, T Belgya, Zs Révay (eds.) Proceedings of 9th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, 8–12 October, Springer Verlag, Budapest, Berlin, Heidelberg, 826–837, ISBN-963-7775-55Google Scholar
  16. 16.
    Yonezawa Ch, Haji Wood AK, Hoshi M, Ito Y, Tachikawa E (1993) Nucl Instr Methods A 329:207. doi: 10.1016/0168-9002(93)90938-E CrossRefGoogle Scholar
  17. 17.
    Mackey EA, Anderson DL, Liposky PJ, Lindstrom RM, Chen-Mayer H, Lamaze GP (2004) Nucl Instr Methods B 226:426. doi: 10.1016/j.nimb.2004.05.038 CrossRefGoogle Scholar
  18. 18.
    Paul RL, Lindstrom RM, Brocker C, Mackey EA (2008) J Radioanal Nucl Chem 278:697. doi: 10.1007/s10967-008-1507-8 CrossRefGoogle Scholar
  19. 19.
    Scionix Holland BV Dedicated Scintillation Detectors P.O. Box 143 3980 CC Bunnik, The NetherlandsGoogle Scholar
  20. 20.
    Belgya T (2006) Physical Review C. 74: 024603-1-8Google Scholar
  21. 21.
    Gencho YR (2006) Dipole-strength distributions below the giant dipole resonance in 92Mo, 98Mo and 100Mo, Ph.D. dissertation, Institut für Kern und Teilchenphysik Fakultät Matematik und Naturwissenschaften, Technische Universität Dresden, Dresden, Fig. 4.2, p 39Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • László Szentmiklósi
    • 1
    Email author
  • Zoltán Kis
    • 1
  • Tamás Belgya
    • 1
  • Andrey N. Berlizov
    • 2
    • 3
  1. 1.Nuclear Analysis and Radiography DepartmentCentre for Energy Research, Hungarian Academy of SciencesBudapestHungary
  2. 2.Institute for Nuclear ResearchNational Academy of Sciences of UkraineKievUkraine
  3. 3.International Atomic Energy AgencyVienna International CentreViennaAustria

Personalised recommendations