Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 2, pp 1385–1392 | Cite as

Cross-section measurement of some deuteron induced reactions on 160Gd for possible production of the therapeutic radionuclide 161Tb

  • F. Tárkányi
  • A. Hermanne
  • S. Takács
  • F. Ditrói
  • J. Csikai
  • A. V. Ignatyuk


The radionuclide 161Tb (T 1/2 = 6.89 days) is potentially important for internal radiotherapy. It is generally produced through the 160Gd(n,γ)161Gd → 161Tb route at research reactors. In this work the possibility of its production at a cyclotron was investigated. Determination of the excitation function of the 160Gd(d,x)161Tb production route and that of the disturbing 160Gd(d,2n)160Tb side reaction was done over the deuteron energy range up to 50 MeV using the stacked-foil technique and high-resolution γ-ray spectrometry. A comparison of this production route with the established (n,γ) reaction at a nuclear reactor is made.


161Tb 160Tb Deuteron irradiation Comparison with the neutron induced production Yield calculation 



This study was performed in the frame of the MTA-JSPS and MTA-FWO (Vlaanderen) collaboration programs. The authors thank the different research projects and their respective institutions for the practical help and providing the use of the facilities for this study.


  1. 1.
    Qaim SM (2001) Therapeutic radionuclides and nuclear data. Radiochim Acta 89(4–5):297–302Google Scholar
  2. 2.
    Uusijarvi H, Bernhardt P, Rosch F, Maecke HR, Forssell-Aronsson E (2006) Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med 47(5):807–814Google Scholar
  3. 3.
    Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grunberg J, Hohn A, Koster U, Schibli R, Turler A, Zhernosekov K (2011) The low-energy beta(−) and electron emitter Tb-161 as an alternative to Lu-177 for targeted radionuclide therapy. Nucl Med Biol 38(6):917–924CrossRefGoogle Scholar
  4. 4.
    Lehenberger SM (2010) Evaluation and application of the low energy electron emitter 161Tb, PhD Thesis, Technischen Universität MünchenGoogle Scholar
  5. 5.
    Habs D, Koster U (2011) Production of medical radioisotopes with high specific activity in photonuclear reactions with gamma-beams of high intensity and large brilliance. Appl Phys B 103(2):501–519CrossRefGoogle Scholar
  6. 6.
    Gayoso RE, Sonzogni AA, Nassiff SJ (1996) (alpha, pxn) reactions on natural gadolinium. Radiochim Acta 72(2):55–60Google Scholar
  7. 7.
    Hermanne A, Takács S, Goldberg MB, Lavie E, Shubin YN, Kovalev S (2006) Deuteron-induced reactions on Yb: measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides. Nucl Instrum Methods B 247(2):223–231CrossRefGoogle Scholar
  8. 8.
    Manenti S, Groppi F, Gandini A, Gini L, Abbas K, Holzwarth U, Simonelli F, Bonardi M (2011) Excitation function for deuteron induced nuclear reactions on natural ytterbium for production of high specific activity Lu-177g in no-carrier-added form for metabolic radiotherapy. Appl Radiat Isot 69(1):37–45CrossRefGoogle Scholar
  9. 9.
    Hermanne A, Tárkányi F, Takács S, Ditrói F, Baba M, Ohtshuki T, Spahn I, Ignatyuk AV (2009) Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets. Nucl Instrum Methods B 267(5):727–736CrossRefGoogle Scholar
  10. 10.
    Takács S, Takács MP, Hermanne A, Tárkányi F, Rebeles RA (2012) Cross sections of deuteron-induced reactions on Sb-nat up to 50 MeV. Nucl Instrum Methods B 278:93–105. doi: 10.1016/j.nimb.2012.02.007 CrossRefGoogle Scholar
  11. 11.
    Hermanne A, Rebeles RA, Tárkányi F, Takács S, Takács MP, Csikai J, Ignatyuk A (2012) Cross sections of deuteron induced reactions on Sc-45 up to 50 MeV: experiments and comparison with theoretical codes. Nucl Instrum Methods B 270:106–115. doi: 10.1016/j.nimb.2011.09.002 CrossRefGoogle Scholar
  12. 12.
    Kinsey RR, Dunford CL, Tuli JK, Burrows TW (1997) NUDAT 2.6. In: Proceedings of the 9th international symposium on capture gamma-ray spectroscopy and related topics, Springer Hungarica Ltd, Budapest, p 657Google Scholar
  13. 13.
    Tárkányi F, Takács S, Gul K, Hermanne A, Mustafa MG, Nortier M, Oblozinsky P, Qaim SM, Scholten B, Shubin YN, Youxiang Z (2001) Beam monitor reactions (Chapt. 4). Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions, vol 1211. TECDOC 1211, IAEA, ViennaGoogle Scholar
  14. 14.
    International-Bureau-of-Weights-and-Measures (1993) Guide to the expression of uncertainty in measurement, 1st edn. International Organization for Standardization, GenèveGoogle Scholar
  15. 15.
    Dityuk AI, Konobeyev AY, Lunev VP, Shubin YN (1998) New version of the advanced computer code ALICE-IPPE. INDC (CCP)-410. IAEA, ViennaGoogle Scholar
  16. 16.
    Herman M, Capote R, Carlson BV, Oblozinsky P, Sin M, Trkov A, Wienke H, Zerkin V (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108(12):2655–2715. doi: 10.1016/j.nds.2007.11.003 CrossRefGoogle Scholar
  17. 17.
    Tárkányi F, Hermanne A, Takács S, Ditrói F, Spahn I, Kovalev SF, Ignatyuk AV, Qaim SM (2007) Activation cross sections of the Tm-169(d,2n) reaction for production of the therapeutic radionuclide Yb-169. Appl Radiat Isot 65(6):663–668. doi: 10.1016/j.apradiso.2007.01.008 CrossRefGoogle Scholar
  18. 18.
    Tárkányi F, Hermanne A, Takács S, Hilgers K, Kovalev SF, Ignatyuk AV, Qaim SM (2007) Study of the 192Os(d,2n) reaction for, production of the therapeutic radionuclide 192Ir in no-carrier added form. Appl Radiat Isot 65(11):1215–1220. doi: 10.1016/j.apradiso.2007.06.007 CrossRefGoogle Scholar
  19. 19.
    Koning AJ, Rochman D (2011) TALYS-based evaluated nuclear data library version 4. Nuclear Research and Consultancy Group (NRG), PettenGoogle Scholar
  20. 20.
    Ignatyuk AV (2011) Phenomenological systematics of the (d,p) cross sections, Accessed on 15 April 2013
  21. 21.
    Tárkányi F, Ditrói F, Takács S, Hermanne A, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2013) Activation cross sections of longer lived products of deuteron induced nuclear reactions on ytterbium up to 40 MeV. Appl Radiat Isot (in press)Google Scholar
  22. 22.
    Bonardi M (1987) The contribution to nuclear data for biomedical radioisotope production from the Milan cyclotron facility. Paper presented at the consultants meeting on data requirements for medical radioisotope production, TokyoGoogle Scholar
  23. 23.
    Johnston K, Köster U, Müller C, Schibli R, Türler A, Zhernosekov K, Dorrer H, Béhé M (2012) Production of four terbium radioisotopes for radiopharmaceutical applications. In: NRC-8, EuCheMS international conference on nuclear and radiochemistry, Como., p 17. Accessed 15 April 2013
  24. 24.
    Glukhov LM, Greish AA, Kustov LM (2010) Electrodeposition of rare earth metals Y, Gd, Yb in ionic liquids. Russ J Phys Chem A 84(1):104–108CrossRefGoogle Scholar
  25. 25.
    Avrigeanu M, Avrigeanu V (2012) Consistent analysis of all-inclusive deuteron-induced reactions at low energies. In: 13th international conference on nuclear reaction mechanisms, Varenna. Accessed 15 April 2013
  26. 26.
    Walker CK (2008) Phenomenological model for projectile-breakup reactions. Paper presented at the 1st research co-ordination meeting on nuclear data libraries for advanced systems: fusion devices, ViennaGoogle Scholar
  27. 27.
    Tárkányi F, Hermanne A, Ditrói F, Takács S, Király B, Csikai G, Baba M, Yamazaki H, Uddin MS, Ignatyuk AV, Qaim SM (2011) Systematic study of activation cross-sections of deuteron induced reactions used in accelerator applications. Paper presented at the workshop on nuclear measurements, evaluations and applications. NEMEA 6, Krakow, 25–28 Oct, 2010Google Scholar
  28. 28.
    Tárkányi F (2011) Contribution to the experimental activation cross section database of proton and deuteron induced reactions. Accessed 15 April 2013

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • F. Tárkányi
    • 1
  • A. Hermanne
    • 2
  • S. Takács
    • 1
  • F. Ditrói
    • 1
  • J. Csikai
    • 1
  • A. V. Ignatyuk
    • 3
  1. 1.Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI)DebrecenHungary
  2. 2.Cyclotron LaboratoryVrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Institute of Physics and Power Engineering (IPPE)ObninskRussia

Personalised recommendations