Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 3, pp 2083–2090 | Cite as

99mTc-labeled bombesin analog for breast cancer identification

  • André Luís Branco de Barros
  • Luciene das Graças Mota
  • Carolina de Aguiar Ferreira
  • Natássia Caroline Resende Corrêa
  • Alfredo Miranda de Góes
  • Mônica Cristina Oliveira
  • Valbert Nascimento Cardoso


Bombesin is a tetradecapeptide that binds specifically to gastrin releasing peptide receptors in humans. Several forms of cancer, including lung, prostate, breast, and colon express receptors for bombesin-like peptides. Radiolabeled bombesin analogs with a high affinity for these receptors might therefore be used for scintigraphic imaging of these tumor types. A truncated bombesin derivative (HYNIC-βAla-Bombesin(7–14)) was radiolabeled with technetium-99m using EDDA and tricine as coligands. In vitro stability was evaluated in presence of plasma and excess of cysteine. The receptor-binding affinity assays was evaluated in MDA-MB-231 cancer cell line. In addition, in vivo biodistribution was performed in nude mice bearing breast tumor. In vitro assay showed a good affinity for the MDA-MB-231 cell line, showing 20.0 % of internalization at 4 h post-administration. 99mTc-HYNIC-βAla-Bombesin(7–14) biodistribution revealed a rapid clearance and a significant renal excretion. In addition, tumor uptake was higher than non-excretory organs, such as the spleen, the liver, and muscles. Tumor-to-muscle and tumor-to-blood ratios for 99mTc-HYNIC-βAla-Bombesin(7–14) showed high values at 4 h post-injection (5.34 and 4.55, respectively). Furthermore, blocked studies using cold bombesin peptide were performed, which demonstrated an important decrease in tumor uptake, indicating a tumor specificity for 99mTc-HYNIC-βAla-Bombesin(7–14). The 99mTc-HYNIC-βAla-Bombesin(7–14) displayed suitable radiochemical characteristics, and adequate affinity to breast tumor cells (MDA-MB-231). Therefore, this analog can be considered as a candidate for the identification of bombesin-positive tumors.


Bombesin MDA-MB-231 Breast tumor Scintigraphic imaging Diagnosis Radiolabeled peptide 



We wish to thank Pro-Reitoria de Pesquisa (UFMG), Comissão Nacional de Energia Nuclear (CNEN-Brazil), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG-Brazil) for their financial support and fellowships.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90CrossRefGoogle Scholar
  2. 2.
    de Barros ALB, Mota LG, Ferreira CA, Oliveira MC, Góes AM, Cardoso VN (2010) Bombesin derivative radiolabeled with technetium-99m as agent for tumor identification. Bioorg Med Chem Lett 10:6182–6184CrossRefGoogle Scholar
  3. 3.
    Dijkgraaf I, Rijnders AY, Soede A, Dechesne AC, van Esse GW, Brouwer AJ, Corstens FHM, Boerman OC, Rijkers DTS, Liskamp RMJ (2007) Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem 5:935–944CrossRefGoogle Scholar
  4. 4.
    Froidevaux S, Eberle AN, Christe M, Sumanovski L, Heppeler A, Schmitt JS, Eisenwiener K, Beglinger C, Macke HR (2002) Neuroendocrine tumor targeting: study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model. Int J Cancer 98:930–937CrossRefGoogle Scholar
  5. 5.
    Froidevaux S, Heppeler A, Eberle AN, Meier A, Hausler M, Beglinger C, Béthé M, Powell P, Macke HR (2000) Preclinical comparison in AR4-2J tumor-bearing mice of four radiolabeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-somatostatin analogs for tumor diagnosis and internal radiotherapy. Endocrinology 141:3304–3312CrossRefGoogle Scholar
  6. 6.
    Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, Macke HR, Hofman M, Debus J, Haberkorn U (2001) PET imaging of somatostatin receptors using [68Ga]DOTA-D-Phe1-Tyr3-Octreotide: first results in patients with meningiomas. J Nucl Med 42:1053–1056Google Scholar
  7. 7.
    Zhang H, Chen J, Waldherr C, Hinni K, Waser B, Reubi JC, Maecke HR (2004) Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with Indium-111, Lutetium-177, and Yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 64:6707–6715CrossRefGoogle Scholar
  8. 8.
    Munnink THO, Nagengast WB, Brouwers AH, Schroder CP, Hospers GA, Lub-de Hooge MN, Van der Wall E, Van Diest PJ, Vries EGE (2009) Molecular imaging of breast cancer. Breast J S3:S66–S73Google Scholar
  9. 9.
    Schottelius M, Wester H (2009) Molecular imaging targeting peptide receptors. Methods 48:161–177CrossRefGoogle Scholar
  10. 10.
    Faintuch BL, Teodoro R, Duatti A, Muramoto E, Faintuch S, Smith CJ (2008) Radiolabeled bombesin analogs for prostate cancer diagnosis: preclinical studies. Nucl Med Biol 35:401–411CrossRefGoogle Scholar
  11. 11.
    Koopmans KP, Neels ON, Kema IP, Elsinga PH, Links TP, Vries EGE, Jager PL (2009) Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol 71:199–213CrossRefGoogle Scholar
  12. 12.
    Okarvi SM, Al-Jammaz I (2003) Synthesis, radiolabelling and biological characteristics of a bombesin peptide analog as a tumor imaging agent. Anticancer Res 23:2745–2750Google Scholar
  13. 13.
    Santos-Cuevas CL, Ferro-Flores G, Merphy CA, Ramírez FM, Luna-Gutiérrez MA, Pedraza-Lopez M, Gárcia-Becera R, Ordaz-Rosado D (2009) Design, preparation, in vitro and in vivo evaluation of 99mTc-N2S2-Tat(49–57)-bombesin: a target-specific hybrid radiopharmaceutical. Int J Pharm 375:75–83CrossRefGoogle Scholar
  14. 14.
    Virgolini IJ, Gabriel M, Guggenberg EV, Putzer D, Kendler D, Decristoforo C (2009) Role of radiopharmaceutical in the diagnosis and treatment of neuroendocrine tumours. Eur J Cancer 45:274–291CrossRefGoogle Scholar
  15. 15.
    Zhang K, Aruva MR, Shanthly N, Cardi CA, Patel CA, Rattan S, Cesarone G, Wickstrom E, Thakur ML (2007) Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) receptor specific peptide analogues for PET imaging of breast cancer: in vitro/in vivo evaluation. Regul Pept 144:91–100CrossRefGoogle Scholar
  16. 16.
    Anastasi A, Erspamer V, Bucci M (1971) Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27:166–167CrossRefGoogle Scholar
  17. 17.
    Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427CrossRefGoogle Scholar
  18. 18.
    Jensen RT, Battley JF, Spindel ER, Benya RV (2008) Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60:1–42CrossRefGoogle Scholar
  19. 19.
    Gonzalez N, Moody TW, Igarashi H, Ito T, Jensen RT (2008) Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes 15:58–64CrossRefGoogle Scholar
  20. 20.
    Smith CJ, Volkert WA, Hoffman TJ (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32:733–740CrossRefGoogle Scholar
  21. 21.
    Schulz S, Rocken C, Schulz S (2006) Immunohistochemical detection of bombesin receptor subtypes GRP-R and BRS-3 in human tumors using novel antipeptide antibodies. Virchows Arch 449:421–427CrossRefGoogle Scholar
  22. 22.
    Weber HC (2009) Regulatory and signaling of human bombesin receptor and their biological effects. Curr Opin Endocrinol Diabetes Obes 16:66–71CrossRefGoogle Scholar
  23. 23.
    Langer M, Beck-Sickinger AG (2010) Peptides as carrier for tumor diagnosis and treatment. Curr Med Chem Anticancer Agents 1:71–93CrossRefGoogle Scholar
  24. 24.
    Schuhmacher J, Zhang H, Doll J, Macke HR, Matys R, Hauser H, Henze M, Haberkorn U, Eisenhut M (2005) GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68 Ga-labeled bombesin(6–14) analog. J Nucl Med 46:691–699Google Scholar
  25. 25.
    Scopinaro F, de Vincentis AD, Varvarigou AD (2005) Use of radiolabeled bombesin in humans. J Clin Oncol 23:3170–3171CrossRefGoogle Scholar
  26. 26.
    van de Wiele C, Phonteyne P, Pauwels P, Goethals I, Van den Broecke R, Cocquyt V, Dierckx RA (2008) Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J Nucl Med 49:260–264CrossRefGoogle Scholar
  27. 27.
    Hoffman TJ, Quinn TP, Volkert WA (2001) Radiometalled receptor-avid peptide conjugates for specific in vivo targeting of cancer cells. Nucl Med Biol 28:527–539CrossRefGoogle Scholar
  28. 28.
    Hoffman TJ, Gali H, Smith CJ, Sieckman GL, Hayes DL, Owen NK, Volkert WA (2003) Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med 44:823–831Google Scholar
  29. 29.
    Kunstler JU, Veerendra B, Figueroa SD, Sieckman GL, Rold TL, Hoffman TJ, Smith CJ, Pietzsch HJ (2007) Organometallic 99mTc(III) ‘4 + 1’ bombesin(7–14) conjugates: syntesis, radiolabeling, and in vitro/in vivo studies. Bioconjug Chem 18:1651–1661CrossRefGoogle Scholar
  30. 30.
    Liu Z, Li ZB, Cao Q, Liu S, Wang F, Chen X (2009) Small-animal PET of tumors with 64Cu-labeled RGD-bombesin heterodimer. J Nucl Med 50:1168–1177CrossRefGoogle Scholar
  31. 31.
    Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, Xing L, Chen X (2006) 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 47:492–501Google Scholar
  32. 32.
    de Barros ALB, Cardoso VN, Mota LG, Alves RJ (2010) Synthesis and biodistribution studies of carbohydrate derivative radiolabeled with technetium-99m. Bioorg Med Chem Lett 20:315–317CrossRefGoogle Scholar
  33. 33.
    Yang DJ, Kim C, Schechter NR, Azhdarinia A, Yu D, Oh C, Bryant JL, Won J, Kim EE, Podoloff DA (2003) Imaging with 99mTc-ECDG targeted at the multifunctional glucose system: feasibility studies with rodents. Radiology 226:465–473CrossRefGoogle Scholar
  34. 34.
    Surfraz MB, King R, Mather SJ, Biagini SCG, Blower PJ (2007) Trifluoroacetyl-HYNIC peptide: synthesis and 99mTc radiolabeling. J Med Chem 50:1418–1422CrossRefGoogle Scholar
  35. 35.
    Miranda-Olvera AD, Ferro-Flores G, Pedraza-López M, Murphy CA, León-Rodríguez LM (2007) Synthesis of oxytocin HYNIC derivative as potent diagnostic agent for breast cancer. Bioconjug Chem 18:1560–1567CrossRefGoogle Scholar
  36. 36.
    Zhang K, Aruva MR, Shanthly N, Cardi CA, Rattan S, Patel C, Kim C, McCue PA, Wickstrom E, Thakur ML (2008) PET imaging of VPAC1 expression in experimental and spontaneous prostate cancer. J Nucl Med 49:112–121CrossRefGoogle Scholar
  37. 37.
    Smith CJ, Gali H, Sieckman GL, Higginbotham C, Volkert WA, Hoffman TJ (2003) Radiochemical investigation of 99mTc-N3S-X-BBN[7–14]NH2: an in vitro/in vivo structure-activity relationship study where X = 0-, 3-, 5-, 8- and 11-carbon tethering moieties. Bioconjug Chem 14:93–102CrossRefGoogle Scholar
  38. 38.
    Kim I, Kim TH, Ma K, Park ES, Oh KT, Lee ES, Lee KC, Youn YS (2011) A 4-arm polyethylene glycol derivative conjugated with exendin-4 peptide and palmitylamine having dual-function of size-increase and albumin-binding for long hypoglycemic action. Regul Pept 167:239–245CrossRefGoogle Scholar
  39. 39.
    Nock B, Nikolopoupou A, Chiotellis E, Loudos G, Maintas D, Reubi JC, Maina T (2003) [99mTc]Domobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 30:247–258CrossRefGoogle Scholar
  40. 40.
    Chao C, Ives K, Hellmich HL, Townsend CM, Hellmich MR (2009) Gastrin-releasing peptide receptor in breast cancer mediates cellular migration and interleukin-8 expression. J Surg Res 156:26–31CrossRefGoogle Scholar
  41. 41.
    Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49:318–326CrossRefGoogle Scholar
  42. 42.
    Maina T, Nock BA, Zhang H, Nikolopoulou A, Waser B, Reubi J, Maecke HR (2005) Species differences of bombesin analog interactions with GRP-R define the choice of animal models in the development of GRP-R-targeting drugs. J Nucl Med 46:823–830Google Scholar
  43. 43.
    Mansi R, Wang X, Forrer F, Waser B, Cescato R, Graham K, Borkowski S, Reubi JC, Maecke HR (2011) Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 38:97–107CrossRefGoogle Scholar
  44. 44.
    Halmos G, Wittliff JL, Schally AV (1995) Characterization of bombesin/gastrin-releasing peptide receptors in human breast cancer and their relationship to steroid receptor expression. Cancer Res 55:280–287Google Scholar
  45. 45.
    Phillips WT (1999) Delivery of gamma-imaging agents by liposomes. Adv Drug Deliv Rev 37:13–32CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • André Luís Branco de Barros
    • 1
  • Luciene das Graças Mota
    • 2
  • Carolina de Aguiar Ferreira
    • 1
  • Natássia Caroline Resende Corrêa
    • 3
  • Alfredo Miranda de Góes
    • 3
  • Mônica Cristina Oliveira
    • 1
  • Valbert Nascimento Cardoso
    • 1
  1. 1.Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations