Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 1, pp 133–145 | Cite as

Determination of phase compositions in ceramics from Gobi desert using complementary diffraction techniques

  • R. Gilles
  • I. M. Siouris
  • W. Kockelmann
  • D. Visser
  • S. Katsavounis
  • J. M. Walter
  • M. Hoelzel
  • M. Brunelli
Article
  • 225 Downloads

Abstract

The city Khara Khoto is located in the Gobi desert in Inner Mongolia. This city was deserted in the late 14th century and rediscovered in the beginning of the 20th century. In the present study, ceramic sherds typical for the Khara Khoto area have been analysed using neutrons, laboratory X-ray diffraction, synchrotron radiation X-ray diffraction as well as optical microscopy as complementary probes in extracting information on the mineral phase compositions as well as on the firing conditions during the pottery production. The data evaluation was performed with the standard diffraction analysis package GSAS and the new developed program AmPhOrAe. The dominating phase is mullite (~60 %) compared to a variable mixture of SiO2 quartz and cristobalite phases (~35 %) and feldspar as a minority phase. Refiring experiments on one of the sherds allow estimating the firing temperatures of the ceramics within the region of 1,150 and 1,250 °C.

Keywords

Pottery sherds Phase transformation Neutron diffraction Synchrotron diffraction Optical microscopy 

References

  1. 1.
    Kozlov PK (1925) Mongolia, amdo and the dead city of khara-khoto. Neufeld & Henius, Berlin, p 296Google Scholar
  2. 2.
    Baumann B (2004) “Die Wueste Gobi”. National Geographic, Frederking & Thaler, Munich. ISBN 3894052236Google Scholar
  3. 3.
    Whitefield S (1995) Newsletter of the international dunhuang project, no. 2 ISSN 1354-5914Google Scholar
  4. 4.
    Kockelmann W, Pantos E, Kirfel A (2000) Neutron and synchrotron radiation studies of archaeological objects. In: Creagh DC, Bradley DA (eds) Radiation in art and archaeometry. Elsevier, Amsterdam, pp 347–377. ISBN 0-444-50487-7CrossRefGoogle Scholar
  5. 5.
    Siouris IM (2008) J Phys Condens Matter 20:104252–104259CrossRefGoogle Scholar
  6. 6.
    Riccardi MP, Messiga B, Duminuco P (1999) Appl Clay Sci 15:393–409CrossRefGoogle Scholar
  7. 7.
    Rasmussen KL, De La Fuente GA, Bond AD, Mathiesen KK, Vera SD (2012) J Archaeol Sci 39(6):1705–1716CrossRefGoogle Scholar
  8. 8.
    Wagner U, Gebhard R, Häusler W, Hutzelmann T, Riederer T, Shimada I, Sosa J, Wagner FE (1999) Hyperfine Interact 122(1–2):163–170CrossRefGoogle Scholar
  9. 9.
    Gilles R, Artus G, Saroun J, Boysen H, Fuess H (2000) Phys B 276–278:87–88CrossRefGoogle Scholar
  10. 10.
    Gilles R, Krimmer B, Saroun J, Boysen H, Fuess H (2001) Mater Sci Forum 378–381:282–287CrossRefGoogle Scholar
  11. 11.
    Hoelzel M, Senyshyn A, Juenke N, Boysen H, Schmahl W, Fuess H (2012) Nucl Instrum Method A 667:32–37CrossRefGoogle Scholar
  12. 12.
    Fitch AN (2004) J Res Natl Inst Stand Technol 109:133–142CrossRefGoogle Scholar
  13. 13.
    Larson AC, Von Dreele B (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  14. 14.
    Schaefer W, Jansen E, Skowronek R, Kirfel A (1997) Phys B 234–236:1146–1148CrossRefGoogle Scholar
  15. 15.
    Kockelmann W, Jansen E, Schäfer W, Will W (1996) Report Jül-3024, Forschungszentrum (KFA), JülichGoogle Scholar
  16. 16.
    Will G (2005) Powder diffraction: the Rietveld method and the two-stage method to determine and refined crystal structures from powder diffraction data. Springer, Berlin and Heidelberg. ISBN 3-540-27985-7Google Scholar
  17. 17.
    Steinier J, Termonia Y, Deltour J (1972) Ann Chem 44:1906–1909CrossRefGoogle Scholar
  18. 18.
    Siouris IM, Walter J (2006) Phys B 385(1):225–227CrossRefGoogle Scholar
  19. 19.
    Le Bail A, Non J (1995) Cryst Solids 183:39–42CrossRefGoogle Scholar
  20. 20.
    Maggetti M (1982) Phase analysis and its significance for technology and origin. In: Olin JS (ed) Archaeological Ceramics. Smithsonian Institution Press, Boston, pp 121–133Google Scholar
  21. 21.
    Inorganic Crystal Structure Database (1999) Fachinformationszentrum Karlsruhe. http://icsd.fiz-karlsruhe.de/icsd/. Accessed 28 Jan 2012
  22. 22.
    Aumento F (1966) Am Mineral 51:1167–1176Google Scholar
  23. 23.
    Young J, Rea MS, Briggs G (1989) Br Ceram Trans J 88:58–62Google Scholar
  24. 24.
    Heaney PJ, Veblen DR, Post JE (1994) Am Mineral 79:452–460Google Scholar
  25. 25.
    Sanchez E, Orts MJ, Garcia-Ten J, Cantavella V (2001) Am Ceram Soc Bull 80(6):43–49Google Scholar
  26. 26.
    Guinier A (1963) X-ray diffraction in crystals, imperfect crystals and amorphous bodies. H. W. Freeman and Co, San Francisco, p 378Google Scholar
  27. 27.
    Richet P, Bottinga Y (1984) Earth Planet Sci Lett 67:415–432CrossRefGoogle Scholar
  28. 28.
    Redfern SAT, Salje E (1987) Phys Chem Miner 14:189–195CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • R. Gilles
    • 1
  • I. M. Siouris
    • 2
  • W. Kockelmann
    • 3
  • D. Visser
    • 4
  • S. Katsavounis
    • 2
  • J. M. Walter
    • 5
  • M. Hoelzel
    • 1
  • M. Brunelli
    • 6
    • 7
  1. 1.Technische Universität München, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), ZWEGarchingGermany
  2. 2.Department of Production and Management EngineeringDemocritus University of ThraceXanthiGreece
  3. 3.Rutherford Appleton LaboratorySTFCOxfordshireUK
  4. 4.Department of PhysicsLoughborough UniversityLoughboroughUK
  5. 5.Geowissenschaftliches Zentrum der Universität GöttingenGöttingenGermany
  6. 6.European Synchrotron Radiation FacilityGrenoble CedexFrance
  7. 7.Institut Laue LangevinGrenoble CedexFrance

Personalised recommendations