Input of 129I into the western Pacific Ocean resulting from the Fukushima nuclear event

  • S. J. Tumey
  • T. P. Guilderson
  • T. A. Brown
  • T. Broek
  • K. O. Buesseler


We present an initial characterization of the input of 129I into the Pacific Ocean resulting from the 2011 Fukushima nuclear accident. This characterization is based primarily on 129I measurements on samples collected from a research cruise conducted in waters off the eastern coast of Japan in June 2011. These measurements were compared with samples intended to reflect pre-Fukushima background that were collected during a May 2011 transect of the Pacific by a commercial container vessel. In surface waters, we observed peak 129I concentrations of ~300 μBq/m3 which represents an elevation of nearly three orders of magnitude compared to pre-Fukushima backgrounds. We coupled our 129I results with 137Cs measurements from the same cruise and derived an average 129I/137Cs activity ratio of 0.442 × 10−6 for the effluent from Fukushima. Finally, we present 129I depth profiles from five stations from this cruise which form the basis for future studies of ocean transport and mixing process as well as estimations of the total budget of 129I released into the Pacific.


129Iodine Fukushima Environmental radioactivity Accelerator mass spectrometry Ocean tracers 



This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This publication was funded by the Gordon and Betty Moore Foundation through Grant GBMF3007 to Ken Buesseler and the National Science Foundation. We wish to thank Paul Quay and Hilary Palevsky (University of Washington) for collecting samples from the May 2011 OOCL Tokyo crossing (funding provided by the National Oceanic and Atmospheric Agency’s Global Carbon Cycle Program).


  1. 1.
    Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) J Nucl Sci Technol 48:1129–1134CrossRefGoogle Scholar
  2. 2.
    Morino Y, Ohara T, Nishizawa M (2011) Geophys Res Lett 38:L00G11CrossRefGoogle Scholar
  3. 3.
    Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Proc Natl Acad Sci 108:19530–19534CrossRefGoogle Scholar
  4. 4.
    Tsumune D, Tsubono T, Aoyama M, Hirose K (2011) J Environ Radioact. doi: 10.1016/j.jenvrad.2011.10.007
  5. 5.
    Buesseler KO, Aoyama M, Fukasawa M (2011) Environ Sci Technol 45:9931–9935CrossRefGoogle Scholar
  6. 6.
    Raisbeck GM, Yiou F, Zhou ZQ, Kilius LR (1995) J Mar Syst 6:561–570CrossRefGoogle Scholar
  7. 7.
    Yi P, Aldahan A, Hansen V, Possnert G, Hou XL (2011) Environ Sci Technol 45:903–909CrossRefGoogle Scholar
  8. 8.
    Cooper LW, Hong GH, Beasley TM, Grebmeier JM (2001) Mar Pollut Bull 42:1347–1356CrossRefGoogle Scholar
  9. 9.
    Smith JN, McLaughlin FA, Smethie WM, Moran SB, Lepore K (2011) J Geophys Res 116:C04024CrossRefGoogle Scholar
  10. 10.
    Orre S, Smith JN, Alfimov V, Bentsen M (2010) Environ Fluid Mech 10:213–233CrossRefGoogle Scholar
  11. 11.
    Hou XL, Aldahan A, Nielsen SP, Possnert G, Nies H, Hedfors J (2007) Environ Sci Technol 41:5993–5999CrossRefGoogle Scholar
  12. 12.
    Povinec PP, Breier R, Coppola L, Groening M, Jeandel C, Jull AJT, Kieser WE, Lee S-H, Liong Wee Kwong L, Morgenstern U, Park Y-H, Top Z (2011) Earth Planet Sci Lett 302:14–26CrossRefGoogle Scholar
  13. 13.
    Mironov V, Kudrjashov V, Yiou F, Raisbeck GM (2002) J Environ Radioact 59:293–307CrossRefGoogle Scholar
  14. 14.
    Straume T, Marchetti AA, Anspaugh LR, Krouch VT, Gavrillin YI, Shinkarev SM, Panchenko SV, Minenko VF (1996) Health Phys 71:733–740CrossRefGoogle Scholar
  15. 15.
    Buesseler KO, Jayne SR, Fisher NS, Rypina II, Baumann H, Baumann Z, Breier CF, Douglass EM, George J, Macdonald AM, Miyamoto H, Nishikawa J, Pike SM, Yoshida S (2012) Proc Natl Acad Sci (in press)Google Scholar
  16. 16.
    Fehn U, Tullai-Fitzpatrick S, Kubik PW, Sharma P, Teng RTD, Gove HE, Elmore D (1992) Geochim Cosmochim Acta 56:2069CrossRefGoogle Scholar
  17. 17.
    Moran JE, Fehn U, Teng RTD (1998) Chem Geol 152:193CrossRefGoogle Scholar
  18. 18.
    Tomaru H, Lu Z, Fehn U, Muramatsu Y, Matsumoto R (2007) Geol 35:1015CrossRefGoogle Scholar
  19. 19.
    Roberts ML, Bench GS, Brown TA, Caffee MW, Finkel RC, Freeman SPHT, Hainsworth LJ, Kashgarian M, McAnnich JE, Proctor ID, Southon JR, Vogel JS (1997) Nucl Instr Metho Phys Res B 123:57–61CrossRefGoogle Scholar
  20. 20.
    Snyder G, Aldahan A, Possnert G (2010) Geochem Geophys Geosyst 11:Q04010CrossRefGoogle Scholar
  21. 21.
    Broecker WS, Peng TH (1982) Tracers in the Sea. Eldigio Press, New YorkGoogle Scholar
  22. 22.
    TEPCO News Press Releases (2011) Tokyo Electric Power Company, Japan. Accessed 21 Apr 2011

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • S. J. Tumey
    • 1
  • T. P. Guilderson
    • 1
    • 2
  • T. A. Brown
    • 1
  • T. Broek
    • 2
  • K. O. Buesseler
    • 3
  1. 1.Center for Accelerator Mass SpectrometryLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Ocean SciencesUniversity of California Santa CruzSanta CruzUSA
  3. 3.Department of Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations