Skip to main content
Log in

Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Variation in earth gas level like radon in soil and groundwater is a proven technique for tracing the changes in stresses due to seismotectonic activities. Radon concentrations were measured and investigated in Jooshan hot spring complex, SE of Iran, near Golbaf-Sirch fault sytem from December 2011 until March 2012. Afterward, by considering and studying environmental parameters, the relationship between radon anomalous decline and all earthquakes with ratio D/R that introducing by Dobrovolsky et al. was examined. So before earthquakes, the correlation between this ratio and level of variation in radon concentration in magnitude ranging from 2.6 to 5.4 has been studied and the correlation coefficient of 0.74 was obtained. This research shows a good correlation between groundwater radon variations and such earthquake parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Environmental Protection Agency.

References

  1. Igarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S, Sasaki Y, Takahashi M, Sano Y (1995) Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269(5220):60–61. doi:10.1126/science.269.5220.60

    Article  CAS  Google Scholar 

  2. Ghosh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. J Appl Geophys 69(2):67–81. doi:10.1016/j.jappgeo.2009.06.001

    Article  Google Scholar 

  3. Seidel JL, Monnin M, Cejudo J, Chalot JF, Segovia N, de la Cruz S, Mena M, Malavassi E, Barquero J, Fernandez E, Avila G, Van der Laat R (1984) Radon emanometry in active volcanoes. Nucl Tracks Radiat Meas 8(1–4):411–414. doi:10.1016/0735-245x(84)90132-7

    CAS  Google Scholar 

  4. Musavi Nasab S, Negarestani A, Mohammadi S (2011) Modeling of the radon exhalation from water to air by a hybrid electrical circuit. J Radioanal Nucl Chem 288(3):813–818. doi:10.1007/s10967-011-1003-4

    Article  CAS  Google Scholar 

  5. Negarestani A, Setayeshi S, Ghannadi-Maragheh M, Akashe B (2003) Estimation of the radon concentration in soil related to the environmental parameters by a modified Adaline neural network. Appl Radiat Isot 58(2):269–273. doi:10.1016/s0969-8043(02)00304-4

    Article  CAS  Google Scholar 

  6. Iakovleva VS, Ryzhakova NK (2003) A method for estimating the convective radon transport velocity in soils. Radiat Meas 36(1–6):389–391. doi:10.1016/s1350-4487(03)00157-4

    Article  CAS  Google Scholar 

  7. Bujdosó E (1991) Radon in the environment. J Radioanal Nucl Chem 152(2):525–541. doi:10.1007/bf02104705

    Article  Google Scholar 

  8. Cigolini C, Poggi P, Ripepe M, Laiolo M, Ciamberlini C, Delle Donne D, Ulivieri G, Coppola D, Lacanna G, Marchetti E, Piscopo D, Genco R (2009) Radon surveys and real-time monitoring at Stromboli volcano: influence of soil temperature, atmospheric pressure and tidal forces on Rn-222 degassing. J Volcanol Geoth Res 184(3–4):381–388. doi:10.1016/j.jvolgeores.2009.04.019

    Article  CAS  Google Scholar 

  9. Shahabpour J (2005) Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. J Asian Earth Sci 24(4):405–417. doi:10.1016/j.jseaes.2003.11.007

    Article  Google Scholar 

  10. Berberian M, Asudeh I, Arshadi S (1977) Surface rupture and mechanism of the Bob-Tangol (southeastern Iran) earthquake of 19. Earth Planet Sci Lett 42(3):456–462. doi:10.1016/0012-821x(79)90055-4

    Article  Google Scholar 

  11. Walker RT, Talebian M, Saiffori S, Sloan RA, Rasheedi A, MacBean N, Ghassemi A (2010) Active faulting, earthquakes, and restraining bend development near Kerman city in southeastern Iran. J Struct Geol 32(8):1046–1060. doi:10.1016/j.jsg.2010.06.012

    Article  Google Scholar 

  12. Dobrovolsky IP, Zubkov SI, Miachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117(5):1025–1044. doi:10.1007/bf00876083

    Article  Google Scholar 

  13. Tsunomori F, Kuo T (2010) A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan. Radiat Meas 45(1):139–142. doi:10.1016/j.radmeas.2009.08.003

    Article  CAS  Google Scholar 

  14. Kuo T, Fan K, Kuochen H, Han Y, Chu H, Lee Y (2006) Anomalous decrease in groundwater radon before the Taiwan M 6.8 Chengkung earthquake. J Environ Radioact 88(1):101–106. doi:10.1016/j.jenvrad.2006.01.005

    Article  CAS  Google Scholar 

  15. Tsvetkova T, Przylibski TA, Nevinsky I, Nevinsky V (2005) Measurement of radon in the East Europe under the ground. Radiat Meas 40(1):98–105. doi:10.1016/j.radmeas.2004.04.013

    Article  CAS  Google Scholar 

  16. Hauksson E (1981) Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. J Geophys Res 86(B10):9397–9410. doi:10.1029/jb086ib10p09397

    Article  Google Scholar 

  17. Sakoda A, Ishimori Y, Yamaoka K (2011) A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl Radiat Isot 69(10):1422–1435. doi:10.1016/j.apradiso.2011.06.009

    Article  CAS  Google Scholar 

  18. Baciu AC (2005) Radon and thoron progeny concentration variability in relation to meteorological conditions at Bucharest (Romania). J Environ Radioact 83(2):171–189. doi:10.1016/j.jenvrad.2005.02.015

    Article  CAS  Google Scholar 

  19. Klusman RW, Webster JD (1981) Meteorological noise in crustal gas emission and relevance to geochemical exploration. J Geochem Explor 15(1–3):63–76. doi:10.1016/0375-6742(81)90056-x

    Article  CAS  Google Scholar 

  20. Sundal AV, Valen V, Soldal O, Strand T (2008) The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Sci Total Environ 389(2–3):418–428. doi:10.1016/j.scitotenv.2007.09.001

    Article  CAS  Google Scholar 

  21. Chen KH, Nadeau RM, Rau R-J (2008) Characteristic repeating earthquakes in an arc-continent collision boundary zone: the Chihshang fault of eastern Taiwan. Earth Planet Sci Lett 276(3–4):262–272. doi:10.1016/j.epsl.2008.09.021

    Article  CAS  Google Scholar 

  22. Bányai L (1992) The role of the elastic rebound theory in design and evaluation of deformation surveys. Tectonophysics 202(2–4):107–110. doi:10.1016/0040-1951(92)90087-m

    Article  Google Scholar 

  23. Berberian M, Qorashi M (1994) Coseismic fault-related folding during the South Golbaf earthquake of November 20, 1989, in southeast Iran. Geology 22(6):531–534. doi:10.1016/0148-9062(94)90054-x Int J Rock Mech Min Sci Geomech Abstr 31(6):268

    Article  Google Scholar 

  24. Utkin VI, Yurkov AK (2010) Radon as a tracer of tectonic movements. Russ Geol Geophys 51(2):220–227. doi:10.1016/j.rgg.2009.12.022

    Article  Google Scholar 

  25. Walker R, Jackson J (2002) Offset and evolution of the Gowk fault, SE Iran: a major intra-continental strike-slip system. J Struct Geol 24(11):1677–1698. doi:10.1016/s0191-8141(01)00170-5

    Article  Google Scholar 

  26. Teisseyre R (1985) New earthquake rebound theory. Phys Earth Planet Inter 39(1):1–4. doi:10.1016/0031-9201(85)90110-4

    Article  Google Scholar 

  27. Angelier J (2002) Détermination du tenseur des contraintes par inversion de mécanismes au foyer de séismes sans choix de plans nodaux. CR Geosci 334(1):73–80. doi:10.1016/s1631-0713(02)01712-1

    Article  Google Scholar 

  28. Knappett JA, Haigh SK, Madabhushi SPG (2006) Mechanisms of failure for shallow foundations under earthquake loading. Soil Dyn Earthq Eng 26(2–4):91–102. doi:10.1016/j.soildyn.2004.11.021

    Article  Google Scholar 

  29. Kuo T, Su C, Chang C, Lin C, Cheng W, Liang H, Lewis C, Chiang C (2010) Application of recurrent radon precursors for forecasting large earthquakes (Mw > 6.0) near Antung, Taiwan. Radiat Meas 45(9):1049–1054. doi:10.1016/j.radmeas.2010.08.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to prof. Jamshid Shahabpour for his kind guidance during the data interpreting. Also special thanks to Dr. Mohammad Mahani, Dr. Mohammad Reza Rezaei and Mohammad Mehdi Hosseini Bioki for editing the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Namvaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namvaran, M., Negarestani, A. Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J Radioanal Nucl Chem 298, 1–8 (2013). https://doi.org/10.1007/s10967-012-2162-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2162-7

Keywords

Navigation