Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 3, pp 1927–1937 | Cite as

Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems

  • Kazuya Tanaka
  • Aya Sakaguchi
  • Yutaka Kanai
  • Haruo Tsuruta
  • Atsushi Shinohara
  • Yoshio Takahashi


We analyzed 137Cs in aerosols, rock, soil and river suspended sediment collected after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Based on the results, we discuss the post-event behavior and transportation of radiocesium in the environment from the air into ground and river systems. First, radionuclides were emitted from the FDNPP as airborne ‘hot’ particles, which contained water-soluble fractions of radiocesium. Radiocesium was still present in a water-soluble fraction after deposition on the ground. Subsequent interaction of the ‘hot’ particles with water (e.g. rainfall) dissolved and strongly fixed the radiocesium on rock and soil particles, thus changing the radiocesium into insoluble forms. The distribution of ‘hot spots’ was possibly controlled by the initial position of deposition on the ground. Consequently, ‘hot spots’ were studded on the rock surface rather than being uniformly distributed. The distribution of radiocesium in river suspended particles was not homogeneous during water transportation, reflecting the heterogeneity of radiocesium in rock and soil. Leaching experiments demonstrated that radiocesium in rock, soil and river suspended sediment was fairly insoluble, showing that the adsorption reaction is irreversible. The micro-scale heterogeneous distribution of radiocesium in aerosols, soil and suspended particles was due to the presence of ‘hot’ particles in aerosols. Dissolution of radiocesium in the ‘hot’ particles in the aerosols and subsequent irreversible adsorption onto the soil particle complex are responsible for the preservation of the heterogeneity both in soil and in river suspended particles.


Fukushima Radiocesium Micro-scale Heterogeneity 



The authors thank Y. Watanabe, A. Kadokura and M. Fujiwara for their help in the experiments. The aerosol filter samples were kindly provided by Kawasaki Municipal Research Institute for Environmental Protection. The EXAFS measurement has been performed with approvals of KEK (Proposal No. 2011G644 and 2011G197) and JASRI (Proposal No. 2011B1569). This work has been done in the FMWSE project (Fukushima Radiation Monitoring of Water, Soil and Entrainment) supported by MEXT (Ministry of Education, Culture, Sports, Science & Technology in Japan).


  1. 1.
    Nuclear Emergency Response Headquarters Government of Japan (2011) Accessed 6 July 2012
  2. 2.
    Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) J Nucl Sci Technol 48:1129–1134CrossRefGoogle Scholar
  3. 3.
    Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) J Environ Radioact 111:18–27CrossRefGoogle Scholar
  4. 4.
    Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V et al (2005) J Natl Cancer Inst 97:724–732CrossRefGoogle Scholar
  5. 5.
    Kato H, Onda Y, Teramage M (2012) J Environ Radioact 111:59–64CrossRefGoogle Scholar
  6. 6.
    Ohno T, Muramatsu Y, Miura Y, Oda K, Inagawa N, Ogawa H, Yamazaki A, Toyama C, Sato M (2012) Geochem J 46:287–295Google Scholar
  7. 7.
    Tanaka K, Takahashi Y, Sakaguchi A, Umeo M, Hayakawa S, Tanida H, Saito T, Kanai Y (2012) Geochem J 46:73–76Google Scholar
  8. 8.
    Santschi PH, Bollhalder S, Farrenkothen K, Lueck A, Zlngg S, Sturm M (1988) Environ Sci Technol 22:510–516CrossRefGoogle Scholar
  9. 9.
    Owens PN, Walling DE (1996) Appl Radiat Isot 47:699–707CrossRefGoogle Scholar
  10. 10.
    Sutherland RA (1996) Hydrol Process 10:43–53CrossRefGoogle Scholar
  11. 11.
    Kaste JM, Heimasath AM, Hohmann M (2006) Geomorphology 76:430–440CrossRefGoogle Scholar
  12. 12.
    Schaub M, Konz N, Meusburger K, Alewell C (2010) J Environ Radioact 101:369–376CrossRefGoogle Scholar
  13. 13.
    Phillips JM, Russell MA, Walling DE (2000) Hydrol Process 14:2589–2602CrossRefGoogle Scholar
  14. 14.
    Evans DW, Alberts JJ, Clark RA III (1983) Geochim Cosmochim Acta 47:1041–1049CrossRefGoogle Scholar
  15. 15.
    Vidal M, Roig M, Rigol A, Llauradό M, Rauret G, Wauters J, Elsen A, Cremers A (1995) Analyst 120:1785–1791CrossRefGoogle Scholar
  16. 16.
    Kanai Y (2012) J Environ Radioact 111:33–37CrossRefGoogle Scholar
  17. 17.
    Bostick BC, Vairavamurthy MA, Karthikeyan KG, Chorover J (2002) Environ Sci Technol 36:2670–2676CrossRefGoogle Scholar
  18. 18.
    Qin H, Yokoyama Y, Fan Q, Iwatani H, Tanaka K, Sakaguchi A, Kanai Y, Zhu J, Takahashi Y (2012) Geochem J 46:297–302Google Scholar
  19. 19.
    Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) (2011) Accessed 6 July 2012
  20. 20.
    Kinoshita N, Sueki K, Sasa K, Kitagawa J, Ikarashi S, Nishimura T, Wong Y, Satou Y, Handa K, Takahashi T, Sato M, Yamagata T (2011) PNAS 108:19526–19529CrossRefGoogle Scholar
  21. 21.
    Sandalls FJ, Segal MG, Victorova N (1993) J Environ Radioact 18:5–22CrossRefGoogle Scholar
  22. 22.
    Yoschenko VI, Kashparov VA, Protsak VP, Tschiersch J (2003) Appl Radiat Isot 58:95–102CrossRefGoogle Scholar
  23. 23.
    Bondietti EA, Brantley JN, Rangarajan C (1988) J Environ Radioact 6:99–120CrossRefGoogle Scholar
  24. 24.
    Hilton J, Cambray RS, Green N (1992) J Environ Radioact 15:103–111CrossRefGoogle Scholar
  25. 25.
    Tomášek M, Rybáček K, Wilhemová L (1995) J Radioanal Nucl Chem 201:409–416CrossRefGoogle Scholar
  26. 26.
    Jost DT, Gaggeler HW, Baltensperger U, Zinder B, Haller P (1986) Nature 324:22–23CrossRefGoogle Scholar
  27. 27.
    Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New YorkGoogle Scholar
  28. 28.
    Hsu CN, Wei YY, Chuang JT, Tseng CL, Yang JY, Ke CH, Cheng HP, Teng SP (2002) Radiochim Acta 90:659–664CrossRefGoogle Scholar
  29. 29.
    Lee CP, Lan PL, Jan YL, Wei YY, Teng SP, Hsu CN (2006) Radiochim Acta 94:679–682CrossRefGoogle Scholar
  30. 30.
    He Q, Walling DE (1996) J Environ Radioact 30:117–137CrossRefGoogle Scholar
  31. 31.
    Cremers A, Elsen A, De Preter P, Maes A (1988) Nature 335:247–249CrossRefGoogle Scholar
  32. 32.
    Mckinley JP, Zeissler CJ, Zachara JM, Serne RJ, Lindstrom RM, Schaef HT, Orr RD (2001) Environ Sci Technol 35:3433–3441CrossRefGoogle Scholar
  33. 33.
    Yoshida N, Takahashi Y (2012) Elements 8:201–206CrossRefGoogle Scholar
  34. 34.
    O’Day PA, Rehr JJ, Zabinsky SI, Brown GE (1994) J Am Chem Soc 116:2938–2949CrossRefGoogle Scholar
  35. 35.
    Sakaguchi A, Chiga H, Iwatani H, Tanaka K, Takahashi Y (in preparation)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Kazuya Tanaka
    • 1
  • Aya Sakaguchi
    • 2
  • Yutaka Kanai
    • 3
  • Haruo Tsuruta
    • 4
  • Atsushi Shinohara
    • 5
  • Yoshio Takahashi
    • 2
  1. 1.Institute for Sustainable Sciences and DevelopmentHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of Earth and Planetary Systems Science, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Geological Survey of JapanNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  4. 4.Division of Climate System Research, Atmosphere and Ocean Research Institute (AORI)The University of TokyoKashiwaJapan
  5. 5.Department of Chemistry, Graduate School of ScienceOsaka UniversityToyonakaJapan

Personalised recommendations