Determination of 41Ca with LSC and AMS: method development, modifications and applications

  • D. Hampe
  • B. Gleisberg
  • S. Akhmadaliev
  • G. Rugel
  • S. Merchel
Article

Abstract

Despite the emission of only low energy Auger electrons (ca. 3.6 keV) and the difficulty of obtaining a certified standard, Liquid scintillation counting (LSC) determinations are still reasonable options for a radioanalytical laboratory involved in nuclear installation decommission. Besides, accelerator mass spectrometry (AMS), being the most sensitive analytical technique not only for 41Ca, is gaining increasingly broader accessibility and applicability. Herein, we present a radiochemical separation procedure developed for 41Ca determination with LSC and AMS in varying materials (i.e. water, concrete, sediment, soil, and biota). The radioanalytical isolation consists of anion exchange and extraction chromatography as well as carbonate precipitation and recrystallization from organic solvents. Thereby, interfering radionuclides as 55Fe, 60Co, 152Eu, U or actinides are removed with decontamination factors of 102–104. Quench curves for determining the measurement efficiency is generated with a 41Ca solution gained from the 41Ca/40Ca certified reference material ERM-AE701. In routine application the procedure is characterized by chemical yields of 67–86 %, measurement efficiencies of 1–10 % and detection limits of 0.05 Bq g−1 and 0.3 Bq L−1. Aliquots of the digestion solutions of LSC can be easily converted into CaF2–AMS targets by successive oxsalate and fluoride precipitation. Pros and cons for both measurement techniques are addressed based on 41Ca results from LSC and AMS for the same material.

Keywords

41Ca Radiochemical separation Liquid scintillation counting (LSC) Accelerator mass spectrometry (AMS) Method comparison 

References

  1. 1.
    Paul M, Ahmad I, Kutschera W (1991) Z Phys A 340(249):254Google Scholar
  2. 2.
    Nishiizumi K, Caffee MW, DePaolo DJ (2000) Nucl Instrum Method Phys Res B 172:399–403CrossRefGoogle Scholar
  3. 3.
    Krasznai JP (1993) Waste Manag (Oxford) 13:131–140CrossRefGoogle Scholar
  4. 4.
    Warwick PE, Croudace IW, Hillegonds DJ (2009) Anal Chem 81:1901–1906CrossRefGoogle Scholar
  5. 5.
    Itoh M, Watanabe K, Hatakeyama M, Tachibana M (2002) Anal Bioanal Chem 372:532–536CrossRefGoogle Scholar
  6. 6.
    Hou X (2005) Radiochim Acta 93:611–617CrossRefGoogle Scholar
  7. 7.
    Müller P, Bushaw BA, Blaum K, Diel S, Geppert Ch, Nähler A, Trautmann N, Nörtershäuser W, Wendt K (2001) Fresenius J Anal Chem 370:508–512CrossRefGoogle Scholar
  8. 8.
    Müller P, Blaum K, Bushaw BA, Diel S, Geppert Ch, Nähler A, Nörtershäuser W, Trautmann N, Wendt K (2000) Radiochim Acta 88:487–493CrossRefGoogle Scholar
  9. 9.
    Bhattacharyya MH, Sacco-Gibson N, Peterson DP (1990) Nucl Instrum Method Phys Res B 52:531–535CrossRefGoogle Scholar
  10. 10.
    Freeman SPHT, Beck B, Bierman JM, Caffee MW, Heaney RP, Holloway L, Marcus R, Southon JR, Vogel SJ (2000) Nucl Instrum Method Phys Res B 172:930–933CrossRefGoogle Scholar
  11. 11.
    Denk E, Hillegonds D, Vogel J, Synal A, Geppert C, Wendt K, Fattinger K, Hennesy C, Berglund M, Hurrell RF, Walczyk T (2006) Anal Bioanal Chem 386:1587–1602CrossRefGoogle Scholar
  12. 12.
    Cheong JMK, Martin BR, Jackson GS, Elmore D, McCabe GP, Nolan JR, Barnes S, Peacock M, Weaver CM (2007) J Clin Endocrinol Metab 92(2):577–582CrossRefGoogle Scholar
  13. 13.
    Lee W-H, Wastney ME, Jackson GS, Martin BR, Weaver MC (2011) Anal Bioanal Chem 399:1613–1622CrossRefGoogle Scholar
  14. 14.
    Freeman SPHT, Serfass RE, King JC, Southon JR, Fang Y, Woodhouse LR, Bench GS, McAninch JE (1995) Nucl Instrum Method Phys Res B 99:557–561CrossRefGoogle Scholar
  15. 15.
    Merchel S, Benedetti L, Bourlès DL, Braucher R, Dewald A, Faestermann T, Finkel RC, Korschinek G, Masarik J, Poutivtsev M, Rochette P, Rugel G, Zell K-O (2010) Nucl Instrum Method Phys Res B 268:1179–1184CrossRefGoogle Scholar
  16. 16.
    Kubik PW, Elmore D, Conard NJ, Nishiizumi K, Arnold JR (1986) Nature 319:568–570CrossRefGoogle Scholar
  17. 17.
    Fink D, Klein J, Middleton R (1990) Nucl Instrum Method Phys Res B 52:572–582CrossRefGoogle Scholar
  18. 18.
    Wallner A, Arazi A, Faestermann T, Knie K, Korschinek G, Maier HJ, Nakamura N, Rühm W, Rugel G (2004) Nucl Instrum Method Phys Res B 223–224:759–764CrossRefGoogle Scholar
  19. 19.
    Magill J, Pfennig G, Galy J (2006) Karlsruher Nuklidkarte (Chart of the Nuclides), 7th edn. Marktdienste Haberbeck, Lage, GermanyGoogle Scholar
  20. 20.
    Firestone RB, Shirley VS, Baglin CM, Chu SYF, Zipkin J (1996) The 8th edition of the Table of Isotopes. Wiley, LondonGoogle Scholar
  21. 21.
    Rodriguez Barquero L, Los Arcos JM (1996) Nucl Instrum Method Phys Res A 369:353–358CrossRefGoogle Scholar
  22. 22.
    Wendt KDA, Geppert C, Miyabe M, Müller OP, Nörtershäuser W, Trautmann N (2002) Int J Nucl Energy Sci Tech 39:303–307CrossRefGoogle Scholar
  23. 23.
    Akhmadaliev S, Heller R, Hanf D, Rugel G, Merchel S (2012) Nucl Instrum Method Phys Res B. doi:10.1016/j.nimb.2012.01.053 Google Scholar
  24. 24.
    Hennessy C, Berglund M, Ostermann M, Walczyk T, Synal H-A, Geppert C, Wendt K, Taylor PDP (2005) Nucl Instrum Method Phys Res B 229:281–292CrossRefGoogle Scholar
  25. 25.
    Merchel S, Herpers U (1999) Radiochim Acta 84:215–219Google Scholar
  26. 26.
    Sunderman DN, Townley CW (1960) Nuclear Science Series. National Academy of Sciences National Research Council, Washington, pp 1–125Google Scholar
  27. 27.
    Wilkins DH, Smith GE (1961) Talanta 8:138–142CrossRefGoogle Scholar
  28. 28.
    Suarez JA, Rodriguez M, Espartero AG, Pina G (2000) Appl Radiat Isotopes 52:407–413CrossRefGoogle Scholar
  29. 29.
    Verordnung zum Schutz vor Schäden durch ionisierende Strahlung (2001, last change 24.02.2012), Annex III, Table 1, column 5 (http://www.bmu.destrahlenschutz/rechtsvorschriften_technische_regeln/doc/6887.php) (German Radiation Protection Ordinance)

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • D. Hampe
    • 1
  • B. Gleisberg
    • 1
  • S. Akhmadaliev
    • 2
  • G. Rugel
    • 2
  • S. Merchel
    • 2
  1. 1.Verein für Kernverfahrenstechnik und Analytik Rossendorf e. VDresdenGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations