Advertisement

Digital pulse-shape discrimination applied to an ultra-low-background gas-proportional counting system: first results

  • C. E. Aalseth
  • A. R. Day
  • E. S. Fuller
  • E. W. Hoppe
  • M. E. Keillor
  • E. K. Mace
  • A. W. Myers
  • C. T. Overman
  • M. E. Panisko
  • A. Seifert
  • G. A. Warren
  • R. M. Williams
Article

Abstract

A new ultra-low-background proportional counter design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (~30 m water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a “self-calibrating” template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed.

Keywords

Signal processing Pulse-shape discrimination Proportional counter Tritium Carbon-14 Biofuel Low background 

Notes

Acknowledgments

This work was performed at the Pacific Northwest National Laboratory with Government support under Contract Number DE-AC06-76RLO-1830 awarded by the United States Department of Energy.

References

  1. 1.
    Povinec P, Szarka J, Usacev S (1979) Nucl Instr Meth 163:369CrossRefGoogle Scholar
  2. 2.
    Wink R, Anselmann P, Dorflinger D, Hampel W, Heusser G, Kirsten T, Mogel P, Pernicka E, Plaga R, Schlosser C (1993) Nucl Instr Meth A 329:541–550CrossRefGoogle Scholar
  3. 3.
    Collon P, Kutschera W, Lu Z-T (2004) Annu Rev Nucl Part Sci 54:39–67CrossRefGoogle Scholar
  4. 4.
    Aalseth CE et al (2009) J Radioanal Nucl Chem 282:233–237CrossRefGoogle Scholar
  5. 5.
    Cleveland BT, Daily T, Davis R, Distel JR, Lande K, Lee CK, Wildenhain PS (1998) Astrophys J 496:505–526CrossRefGoogle Scholar
  6. 6.
    Bellotti E, Cremonesi O, Fiorini E, Gervasio G, Povinec P, Ragazzi S, Rossi L, Sverzelatti PP, Szarka J, Tabarelli de Fatis T, Zanotti L (1992) Nucl Instr Meth A 323:125–134CrossRefGoogle Scholar
  7. 7.
    Theodorsson P (1996) Measurement of weak radioactivity. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  8. 8.
    Hennig W, Chu YX, Tan H, Fallu-Labruyere A, Warburton WK, Grzywacz R (2007) Nucl Instr Meth B 263:175–178CrossRefGoogle Scholar
  9. 9.
    Coleman DD, Liu C-L, Hackley KC, Pelphrey SR (1995) Environ Geosci 2(2):95–103Google Scholar
  10. 10.
    Hirayama H et al (2006) “The EGS5 code system”, report SLAC-R-730. Stanford Linear Accelerator Center, StanfordGoogle Scholar
  11. 11.
    Mook WG, van der Plicht J (1999) Radiocarbon 41(3):227–239Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • C. E. Aalseth
    • 1
  • A. R. Day
    • 1
  • E. S. Fuller
    • 1
  • E. W. Hoppe
    • 1
  • M. E. Keillor
    • 1
  • E. K. Mace
    • 1
  • A. W. Myers
    • 1
  • C. T. Overman
    • 1
  • M. E. Panisko
    • 1
  • A. Seifert
    • 1
  • G. A. Warren
    • 1
  • R. M. Williams
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations