Skip to main content
Log in

Cs, Am and Pu isotopes as tracers of sedimentation processes in the Curonian Lagoon–Baltic Sea system

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

137Cs, 241Am and Pu isotopes were analyzed in seawater, bottom sediments (BS) and suspended particulate matter samples collected in the Baltic Sea during 1997–2011. The particle size distribution and sequential extraction studies were carried out with the aim to better understand the association of radionuclides with particles and their bonding patterns in the BS. δ13Corg was applied for identification of sources of organic matter in the studied area. It has been found that massic activities of 137Cs in BS varied from 2.1 to 588 Bq/kg. High correlation of 137Cs massic activities with total organic carbon (TOC) in BS (r = 0.75) and with clay minerals (r = 0.95) was found. 239,240Pu massic activities in BS varied from 0.03 to 7.5 Bq/kg. High correlation with TOC was found for 239,240Pu (R = 0.98) as well as for 241Am (r = 0.96). δ13Corg in the studied samples ranged from −22.3 to −31.8 ‰.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Povinec PP, Bailly Du, Bois P, Kershaw PJ, Nies H, Scotto P (2003) Temporal and spatial trends in the distribution of 137Cs in surface waters of northern European Seas—a record of 40 years of investigations. Deep-Sea Res II Top Stud Oceanogr 50:2785–2801

    Article  CAS  Google Scholar 

  2. Szefer P (2002) Metal pollutants and radionuclides in the Baltic Sea—an overview. Oceanologia 44:129–178

    Google Scholar 

  3. Bradtke K, Burska D, Matciak M, Szymelfenig M (2005) Suspended particulate matter in the Hel upwelling region (the Baltic Sea). Oceanol Hydrobiol Stud 34(Suppl 2):53–73

    Google Scholar 

  4. Almroth-Rosell E, Eilola K, Hordoir R, Meier HEM, Hall POJ (2011) Transport of fresh and resuspended particulate organic material in the Baltic Sea—a model study. J Mar Syst 87:1–12

    Article  Google Scholar 

  5. Jonsson P, Carma R, Wulff F (1990) Laminated sediments in the Baltic—a tool for evaluating nutrient mass balances. Ambio 1:152–158

    Google Scholar 

  6. Galkus A, Joksas K (1997) Sedimentary material in the transitional aquasystem. Institute of Geography, Vilnius

    Google Scholar 

  7. Livingston HD, Povinec PP (2002) A millennium perspective on the contribution of global fallout radionuclides to ocean science. Health Phys 82:656–668

    Article  CAS  Google Scholar 

  8. Hirose K, Aoyama M, Povinec PP (2009) 239,240Pu/137Cs ratios in the water column of the North Pacific: a proxy of biogeochemical processes. J Environ Radioact 100:258–262

    Article  CAS  Google Scholar 

  9. Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar Chem 60:217–225

    Article  CAS  Google Scholar 

  10. Tenzer GE, Meyers PA, Knoop P (1997) Sources and distribution of organic and carbonate carbon in surface sediments of Pyramid Lake, Nevada. J Sedim Res 67:884–890

    CAS  Google Scholar 

  11. Benitez-Nelson C (2004) Future application of Thorium-234 in aquatic ecosystems. Eos 85:471–472

    Article  Google Scholar 

  12. Lujanienė G, Jokšas K, Šilobritienė B, Morkūnienė R (2006) Physical and chemical characteristics of 137Cs in the Baltic Sea. Radioact Environ 8:165–179

    Article  Google Scholar 

  13. Lujanienė G, Beneš P, Štamberg K, Jokšas K, Vopalka D, Radžiūtė E, Šilobritienė B, Šapolaitė J (2010) Experimental study and modelling of 137Cs sorption behaviour in the Baltic Sea and the Curonian Lagoon. J Radioanal Nucl Chem 286:361–366

    Article  Google Scholar 

  14. Lujanienė G, Šilobritienė B, Jokšas K (2005) Influence of particle size distribution on the behaviour of 137Cs in the Baltic Sea. In: recent advances in multidisciplinary applied physics. Proceedings of the first international meeting on applied physics (APHYS-2003), Elsevier, London, pp 895–908

  15. Outola I, Inn K, Ford R, Markham S, Outola P (2009) Optimizing standard sequential extraction protocol with lake and ocean sediments. J Radioanal Nucl Chem 282:321–327

    Article  CAS  Google Scholar 

  16. Ščiglo T, Lujanienė G, Šapolaitė J, Radžiūtė E (2010) Effect of natural organic substances on Pu and Am migration in the environment. In: Radiation interaction with material and its use in technologies: international conference: program and materials, Kaunas

  17. Lujanienė G, Beneš P, Štamberg K, Ščiglo T (2012) Kinetics of plutonium and americium sorption to natural clay. J Environ Radioact 108:41–49

    Article  Google Scholar 

  18. Garbaras A, Andriejauskienė J, Barisevičiūtė R, Remeikis V (2008) Tracing of atmospheric aerosol sources using stable carbon isotopes. Lit J Phys 48:259–264

    Article  CAS  Google Scholar 

  19. Lujanienė G (2011) Determination of Pu, Am and Cm in environmental samples. In: International symposium on isotopes in hydrology, marine ecosystems, and climate change studies, Monaco, March 27–April 1, 2011, Proceedings IAEA (accepted)

  20. Remeikaitė-Nikienė N, Lujanienė G, Garnaga G, Jokšas K, Garbaras A, Skipitytė R, Barisevičiūtė R, Šilobritienė B, Stankevičius A. (2012) Redistribution of trace elements and radionuclides in the Curonian Lagoon and the coastal zone of the Baltic Sea. In: IEEE/OES Baltic 2012 International Symposium “Ocean: past, present and future. Climate change research, ocean observations & advanced technologies for regional sustainability”. http://ieeexplore.ieee.org/xpl/conferences.jsp.

  21. Strumińska-Parulska D, Skwarzec B, Pawlukowska M (2012) Plutonium fractionation in southern Baltic Sea sediments. Isotopes Environ Health Stud. doi:10.1080/10256016.2012.683524

    Google Scholar 

  22. Skwarzec B, Jahnz-Bielawska A, Struminska-Parulska D (2011) The inflow of 238Pu and 239, 240Pu from the Vistula River catchment area to the Baltic Sea. J Environ Radioact 102:728–734

    Article  CAS  Google Scholar 

  23. Andre C, Choppin GR (2000) Reduction of Pu(V) by humic acid. Radiochim Acta 88:613–616

    Article  CAS  Google Scholar 

  24. Lujanienė G, Šapolaitė J, Radžiūtė E, Aninkevičius V (2009) Plutonium oxidation state distribution in natural clay and goethite. J Radioanal Nucl Chem 282:793–797

    Article  Google Scholar 

  25. Lujanienė G, Beneš P, Štamberg K, Šapolaitė J, Vopalka D, Ščiglo T (2010) Effect of natural clay components on sorption of Cs, Pu and Am by the clay. J Radioanal Nucl Chem 286:353–359

    Article  Google Scholar 

  26. Arnarson TS, Keil RG (2001) Organic-mineral inter-actions in marine sediments studied using density fractionation and X-ray photoelectron spectroscopy. Organic Geochem 32:1401–1415

    Article  CAS  Google Scholar 

  27. Mayer LM (1994) Surface area control on organic carbon accumulation in continental margin sediments. Geochim Cosmochim Acta 58:1271–1284

    Article  CAS  Google Scholar 

  28. Dong H, Jiang H, Lv G, Eber D, Li S, Kim J (2009) The role of clay minerals in the preservation of organic matter in sediments of Qinghai lake, NW China. Clays Clay Miner 57:213–226

    Article  Google Scholar 

  29. Lalonde K, Mucci A, Ouellet A, Gélinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Financial support provided by the Research Council of Lithuania (contract No. MIP-080/2012) is acknowledged. The authors thank students of the Chemical Department of Vilnius University, participating in the experiments, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lujanienė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lujanienė, G., Garnaga, G., Remeikaitė-Nikienė, N. et al. Cs, Am and Pu isotopes as tracers of sedimentation processes in the Curonian Lagoon–Baltic Sea system. J Radioanal Nucl Chem 296, 787–792 (2013). https://doi.org/10.1007/s10967-012-2029-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2029-y

Keywords

Navigation