Advertisement

Worldwide measurements of radioxenon background near isotope production facilities, a nuclear power plant and at remote sites: the “EU/JA-II” Project

  • P. R. J. Saey
  • A. Ringbom
  • T. W. Bowyer
  • M. Zähringer
  • M. Auer
  • A. Faanhof
  • C. Labuschagne
  • M. S. Al-Rashidi
  • U. Tippawan
  • B. Verboomen
Article

Abstract

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) specifies that radioxenon measurements should be performed at 40 or more stations worldwide within the International Monitoring System (IMS). Measuring radioxenon is one of the principle techniques to detect underground nuclear explosions. Specifically, presence and ratios of different radioxenon isotopes allows determining whether a detection event under consideration originated from a nuclear explosion or a civilian source. However, radioxenon monitoring on a global scale is a novel technology and the global civil background must be characterized sufficiently. This paper lays out a study, based on several unique measurement campaigns, of the worldwide concentrations and sources of verification relevant xenon isotopes. It complements the experience already gathered with radioxenon measurements within the CTBT IMS programme and focuses on locations in Belgium, Germany, Kuwait, Thailand and South Africa where very little information was available on ambient xenon levels or interesting sites offered opportunities to learn more about emissions from known sources. The findings corroborate the hypothesis that a few major radioxenon sources contribute in great part to the global radioxenon background. Additionally, the existence of independent sources of 131mXe (the daughter of 131I) has been demonstrated, which has some potential to bias the isotopic signature of signals from nuclear explosions.

Keywords

Radioxenon Treaty verification Medical isotope production facilities Nuclear power plant 

References

  1. 1.
    Auer M, Axelsson A, Blanchard X, Bowyer TW, Brachet G, Bulowski I, Dubasov Y, Elmgren K, Fontaine JP, Harms W, Hayes JC, Heimbigner TR, McIntyre JI, Panisko ME, Popov Y, Ringbom A, Sartorius H, Schmid S, Schulze J, Schlosser C, Taffary T, Weiss W, Wernsperger B (2004) Intercomparison experiments of systems for the measurement of xenon radionuclides in the atmosphere. Appl Radiat Isot 60 6:863–877CrossRefGoogle Scholar
  2. 2.
    Arino H, Kramer HH (1975) Fission product 99mTc generator. Int J Appl Radiat Isot 26(5):301–303CrossRefGoogle Scholar
  3. 3.
    Becker A, Wotawa G, Ringbom A, Saey PRJ (2010) Backtracking of noble gas measurements taken in the aftermath of the announced October 2006 event in North Korea by means of PTS methods in nuclear source estimation and reconstruction. Pure Appl Geophys 167(4–5):581–599CrossRefGoogle Scholar
  4. 4.
    Becker A (2006) A new tool for NDC analysis of atmospheric transport calculations. CTBTO Spectr 7:19–24Google Scholar
  5. 5.
    Dahlman O, Mykkeltveit S, Haak H (2009) Nuclear test ban—converting political visions to reality. Springer, Heidelberg. 978-1-4020-6883-6Google Scholar
  6. 6.
    De Geer L-E (1996) Atmospheric radionuclide monitoring: a Swedish perspective. In: Huseby ES, Dainty AM (eds) Monitoring a comprehensive Nuclear Test Ban Treaty. Kluwer, The Netherlands, pp 157–177CrossRefGoogle Scholar
  7. 7.
    ENSDF (2009) Evaluated nuclear structure data file. In: National Nuclear Data Center, Brookhaven National LaboratoryGoogle Scholar
  8. 8.
    Kalinowski MB, Axelsson A, Bean M, Blanchard X, Bowyer TB, Brachet G, Hebel S, McIntyre J, Peters J, Pistner C, Raith M, Ringbom A, Saey PRJ, Schlosser C, Stocki T, Taffary T, Ungar RK (2010) Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios. Pure Appl Geophys 167(4):517–539CrossRefGoogle Scholar
  9. 9.
    Kidd L (2008) Curies for patients. Nucl Eng Int 53 648:26–32Google Scholar
  10. 10.
    Matthews KM, Bowyer TW, Saey PRJ, Payne RF (2012) The workshop on signatures of medical and industrial isotope production—WOSMIP; Strassoldo, Italy, 1–3 July 2009. J Environ Radioact 110:1–6CrossRefGoogle Scholar
  11. 11.
    ORNL (2000) SCALE: a modular code system for performing standardized computer analyses for licensing evaluation. In: Nureg/Cr-0200, Rev. 6, Ornl/Nureg/Csd-2/R6, Vols. I, Ii, and IiiGoogle Scholar
  12. 12.
    Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) SAUNA—a system for automatic sampling, processing, and analysis of radioactive xenon. Nucl Instrum Methods Phys Res, Sect A 508(3):542–553CrossRefGoogle Scholar
  13. 13.
    Ringbom A, Elmgren K, Lindh K, Peterson J, Bowyer TW, Hayes JC, McIntyre JI, Panisko M, Williams R (2009) Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006. J Radioanal Nucl Chem 282:1CrossRefGoogle Scholar
  14. 14.
    Saey PRJ (2007) Ultra-low-level measurements of argon, krypton and radioxenon for treaty verification purposes. ESARDA Bull 36:42–55Google Scholar
  15. 15.
    Saey PRJ, Bean M, Becker A, Coyne J, d’mours R, De Geer L-E, Hogue R, Stocki TJ, Ungar RK, Wotawa G (2007) A long distance measurement of radioxenon in Yellowknife, Canada, in late October 2006. Geophys Res Lett 34:L20802CrossRefGoogle Scholar
  16. 16.
    Saey PRJ (2009) The Influence of Radiopharmaceutical Isotope Production on the Global Radioxenon Background. J Environ Radioact 100(5):396–406CrossRefGoogle Scholar
  17. 17.
    Saey PRJ, Bowyer T, Ringbom A (2010) Isotopic noble gas signatures released from medical isotope production facilities—simulations and measurements. Appl Radiat Isot 68:1846–1854CrossRefGoogle Scholar
  18. 18.
    Saey PRJ, Schlosser C, Auer M, Axelsson A, Becker A, Blanchard X, Brachet G, Cella L, De Geer L-E, Kalinowski MB, Peterson J, Popov V, Popov Y, Ringbom A, Sartorius H, Taffary T, Zähringer M (2010) Environmental radioxenon levels in Europe—a comprehensive overview. Pure Appl Geophys 167(4–5):499–515CrossRefGoogle Scholar
  19. 19.
    Sameh AA (2009) Advances in minimization of fission gas release and nuclear waste from large scale fission Mo-99 production facilities. Workshop on signatures of medical and industrial isotope production, Strassoldo, Italy, 1–3 July 2009Google Scholar
  20. 20.
    UNGA (1996) United Nations General Assembly Resolution Number 50/245 U.N. New York, USAGoogle Scholar
  21. 21.
    Vilece K (1996) Nuclear analysis 2.0. Decay and irradiation software. Vilece Consulting Inc., ViennaGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • P. R. J. Saey
    • 1
    • 10
  • A. Ringbom
    • 2
  • T. W. Bowyer
    • 3
  • M. Zähringer
    • 4
  • M. Auer
    • 4
  • A. Faanhof
    • 5
  • C. Labuschagne
    • 6
  • M. S. Al-Rashidi
    • 7
  • U. Tippawan
    • 8
  • B. Verboomen
    • 9
  1. 1.Vienna University of Technology, AtominstitutViennaAustria
  2. 2.Systems Technology DivisionSwedish Defence Research Agency (FOI)StockholmSweden
  3. 3.Pacific Northwest National LaboratoryRichlandUSA
  4. 4.Bundesamt für Strahlenschutz, (BfS)FreiburgGermany
  5. 5.South African Nuclear Energy Corporation (NECSA)PretoriaSouth Africa
  6. 6.South African Weather Service (SAWS)StellenboschSouth Africa
  7. 7.Coastal & Air Pollution DepartmentKuwait Institute of Scientific Research (KISR)SafatKuwait
  8. 8.Physics Department, Fast Neutron Research Facility (FNRF)Chiang Mai UniversityChiang MaiThailand
  9. 9.National Institute for Radioelements (IRE)FleurusBelgium
  10. 10.International Atomic Energy AgencyViennaAustria

Personalised recommendations