Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 1, pp 717–727 | Cite as

Adsorption of uranium(VI) by grapefruit peel in a fixed-bed column: experiments and prediction of breakthrough curves

  • Weihua ZouEmail author
  • Lei Zhao
  • Lu Zhu
Article

Abstract

Adsorbent, natural grapefruit peel (GFP) exhibit good efficacy to adsorb a highly toxic radioactive heavy metal, uranium(VI). Through the fixed-bed column technique adsorption characteristics of uranium(VI) is observed at different flow rate, bed depth, influent uranium(VI) concentration and particle size of adsorbent. The results showed that adsorption reached saturation faster with increasing the flow rate and influent uranium(VI) concentration while it was the advantage of column adsorption with the increase in the GFP bed. The data were fitted to the Thomas model, the Yan model, the Clark model and the mass transfer model by nonlinear regressive analysis. When the flow rate was 8.0 mL min−1 and the influent concentration of uranium(VI) was 90 mg L−1, the maximum adsorption quantity reached 104.1 mg g−1 according to the Thomas model. The bed depth service time model was applied to predict the service times with other flow rate and initial concentration. The theoretical breakthrough curve was compared with experimental breakthrough curve profile in the dynamic process. The results showed that the Yan model was better for the description of breakthrough curves at the experimental conditions than the Thomas and the Clark models. The saturated column was regenerated by 0.05 mol L−1 hydrogen chloride solution and GFP could be reused in uranium(VI) removal.

Keywords

Column adsorption Grapefruit peel Uranium(VI) Dynamic model 

Notes

Acknowledgments

This work was supported by the Education Department of Henan Province in China (No. 2010A610003) and Henan Science and Technology Department in China (No. 122300410163).

References

  1. 1.
    Bozkurt SS, Cavas L, Merdivan M, Molu ZB (2011) J Radioanal Nucl Chem 288:867CrossRefGoogle Scholar
  2. 2.
    Humelnicu D, Popovici E, Dvininov E, Mital C (2009) J Radioanal Nucl Chem 279:131CrossRefGoogle Scholar
  3. 3.
    Kadous A, Didi MA, Villemin D (2010) J Radioanal Nucl Chem 284:431CrossRefGoogle Scholar
  4. 4.
    Mellah A, Chegrouche S, Barkat M (2006) J Colloid Interface Sci 296:434CrossRefGoogle Scholar
  5. 5.
    Morsy AMA, Hussein AEM (2011) J Radioanal Nucl Chem 288:341CrossRefGoogle Scholar
  6. 6.
    Mahramanlioglu M, Bicer IO, Misirli T, Kilislioglu A (2007) J Radioanal Nucl Chem 273:621CrossRefGoogle Scholar
  7. 7.
    Bishay AF (2010) J Radioanal Nucl Chem 286:81CrossRefGoogle Scholar
  8. 8.
    Konstantinou M, Pashalidis I (2007) J Radioanal Nucl Chem 273:549CrossRefGoogle Scholar
  9. 9.
    Bagherifam S, Lakzian A, Ahmedi SJ, Rahimi MF, Halajnia A (2010) J Radioanal Nucl Chem 283:289CrossRefGoogle Scholar
  10. 10.
    Bursali EA, Merdivan M, Yurdakoc M (2010) J Radioanal Nucl Chem 283:471CrossRefGoogle Scholar
  11. 11.
    Saeeda M, Sharif M, Iqbala M (2010) J Hazard Mater 179:564CrossRefGoogle Scholar
  12. 12.
    Zou WH, Zhao L, Zhu L (2012) J Radioanal Nucl Chem 292:1303CrossRefGoogle Scholar
  13. 13.
    Unuabonah EI, Olu-Owolabi BI, Fasuyi EI, Adebowale KO (2010) J Hazard Mater 179:415CrossRefGoogle Scholar
  14. 14.
    Aksu Z, Gonen F (2004) Process Biochem 39:599CrossRefGoogle Scholar
  15. 15.
    Yan G, Viraraghavan T, Chen M (2001) Adsorpt Sci Technol 19:25CrossRefGoogle Scholar
  16. 16.
    Clark RM (1987) Environ Sci Technol 21:573CrossRefGoogle Scholar
  17. 17.
    Goel J, Kadirvelu K, Rajagopal C, Garg VK (2005) J Hazard Mater 125:211CrossRefGoogle Scholar
  18. 18.
    Kundu S, Gupta AK (2005) J Colloid Interface Sci 290:52CrossRefGoogle Scholar
  19. 19.
    Maji SK, Pal A, Pal T, Adak A (2007) Sep Purif Technol 56:284CrossRefGoogle Scholar
  20. 20.
    Han RP, Wang Y, Zou WH, Wang YF, Shi J (2007) J Hazard Mater 145:331CrossRefGoogle Scholar
  21. 21.
    Misaelides P, Godelitsas A, Filippidis A, Charistos D, Anousi I (1995) Sci Total Environ 173/174:237CrossRefGoogle Scholar
  22. 22.
    Ahmad AA, Hameed BH (2010) J Hazard Mater 175:298CrossRefGoogle Scholar
  23. 23.
    Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2004) J Hazard Mater 113B:223CrossRefGoogle Scholar
  24. 24.
    Han RP, Zou LN, Zhao X, Xu YF, Li YF, Li YL, Wang Y (2009) Chem Eng J 149:123CrossRefGoogle Scholar
  25. 25.
    Vijayaraghavan K, Prabu D (2006) J Hazard Mater 137:558CrossRefGoogle Scholar
  26. 26.
    Lodeiro P, Herrero R, Sastre de Vicente ME (2006) J Hazard Mater 137:244CrossRefGoogle Scholar
  27. 27.
    Han RP, Zhang JH, Zou WH, Xiao HJ, Shi J, Liu HM (2006) J Hazard Mater 133:262CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.Department of ChemistryZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations