Skip to main content
Log in

Optimized preparation and preliminary evaluation of [64Cu]–DOTA–trastuzumab for targeting ErbB2/Neu expression

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Breast cancer radioimmunoscintigraphy targeting HER2/neu expression is a growing field of work in nuclear medicine research. Trastuzumab is a monoclonal antibody that binds with high affinity to HER2/neu, which is over expressed on breast and other tumors. Developing new tracers for the detection of this cancer is of great interest. In this study, trastuzumab was successively labeled with [64Cu]CuCl2 after conjugation with DOTA-NHS-ester. The conjugate was purified by molecular filtration, the average number of DOTA conjugated per mAb was calculated and total concentration was determined by spectrophotometric method. DOTA–trastuzumab was labeled with 64Cu produced by 68Zn(p,αn)64Cu nuclear reaction (30 MeV protons at 180 μA). Radiochemical purity, integrity of protein after radiolabeling and immunoreactivity of radiolabeled mAb trastuzumab with HER2/neu antigen and SkBr3 cell line were performed by RIA. In vitro stability of radiolabeled mAb in human serum was determined by thin layer chromatography. In vitro internalization studies were performed with the SkBr3 cell line and the tissue biodistribution of the 64Cu–DOTA–trastuzumab was evaluated in wild-type rat (90 ± 5.5 μCi, 2, 6, 12, 24 h p.i.). The radioimmunoconjugate was prepared with a radiochemical purity of higher than 96 ± 0.5 % (ITLC) and specific activity as high as 5.3 μCi/μg. The average number of chelators per antibody for the conjugate used in this study was 5.8/1. The sample was showed to have similar patterns of migration in the gel electrophoresis. The 64Cu–DOTA–trastuzumab showed high immunoreactivity towards HER2/neu antigen and SkBr3 cell line. In vitro stability of the labeled product was found to be more than 94 % in PBS and 82 ± 0.5 % in human serum over 48 h. In vitro internalization studies of the 64Cu–DOTA–trastuzumab showed that up to 11.5 % of the radioimmunoconjugate internalized after 10 h. The accumulation of the radiolabeled mAb in liver, skin, intestine, lung, spleen, kidney and other tissues demonstrates a similar pattern to the other radiolabeled anti-HER2 immunoconjugates. 64Cu–DOTA–trastuzumab is a potential compound for molecular imaging of PET for diagnosis and treatment studies and follow-up of HER2 expression in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI et al (1984) The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312:513–516

    Article  CAS  Google Scholar 

  2. Pauletti G, Dandekar S, Rong H et al (2000) Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18:3651–3664

    CAS  Google Scholar 

  3. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  Google Scholar 

  4. Leonard DS, Hill ADK, Kelly L, Dijkstra B, McDermott E, Higgins NJO (2002) Anti-human epidermal growth factor receptor 2 monoclonal antibody therapy for breast cancer. Br J Surg 89:262–271

    Article  CAS  Google Scholar 

  5. Tang Y, Wang J, Scollard DA, Mondal H, Holloway C, Kahn HJ et al (2005) Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using (111)In–trastuzumab (Herceptin) Fab fragments. Nucl Med Biol 32:51–58

    Article  CAS  Google Scholar 

  6. Blend MJ, Stastny JJ, Swanson SM, Brechbiel MW (2004) Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. Cancer Biother Radiopharm 18:355–363

    Article  Google Scholar 

  7. Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW (2002) A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 29:599–606

    Article  CAS  Google Scholar 

  8. Winberg KJ, Persson M, Malmstrfm PU, Sjfberg S, Tolmachev V (2004) Radiobromination of anti-HER2/neu/ErbB-2 monoclonal antibody using the p-isothiocyanatobenzene derivative of the [76Br]undecahydro-bromo-7,8-dicarba-nido-undecaborate(1−) ion. Nucl Med Biol 31:425–433

    Article  CAS  Google Scholar 

  9. Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J et al (2009) Development and characterization of clinical-grade 89Zr–trastuzumab for HER2/neu immunoPET imaging. J Nucl Med 50(6):974–981

    Article  CAS  Google Scholar 

  10. Firestone RB, Shirley VS, Baglin CM, Zipkin J (1996) Table of isotopes. 8th edn. Wiley, New York, p 1447

  11. Chappell LL, Ma D, Milenic DE, Garmestani K, Venditto V, Beitzel MP et al (2003) Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N′,N″,N″′-tetraacetic acid for radiolabeling proteins. Nucl Med Biol 30:581–595

    Article  CAS  Google Scholar 

  12. McDevitt MR, Ma D, Simon J, Frank K, Scheinberg DA (2002) Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot 57:841–847

    Article  CAS  Google Scholar 

  13. Smith CJ, Galib H, Sieckmanc GL, Hayes DL, Owen NK, Mazuru DG et al (2003) Radiochemical investigations of 177Lu–DOTA-8-Aoc–BBN[7–14]NH2: an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 30:101–109

    Article  CAS  Google Scholar 

  14. Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW (2000) Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl Med Biol 27:93–100

    Article  CAS  Google Scholar 

  15. Hilgers K, Stoll T, Skakun Y, Coenen HH, Qaim SM (2003) Cross-section measurements of the nuclear reactions natZn(d, x)64Cu, 66Zn(d, α)64Cu and 68Zn(p, αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p, α)67Cu process. Appl Radiat Isot 59:343–351

    Article  CAS  Google Scholar 

  16. Ziegler JF, Biersack JP, Littmark U (2000) The stopping and range of ions in matter (SRIM Code). Version 2000 XX

  17. Weisberg AM (1990) Gold plating, 9th edn. ASM International, Metals Park, pp 247–250

    Google Scholar 

  18. Pippin CG, Parker TA, McMurry TJ, Brechbiel MW (1992) Spectrophotometric method for the determination of a bifunctional dtpa ligand in DTPA–monoclonal antibody conjugates. Bioconjugate Chem 3:342–345

    Article  CAS  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of the bacteriophage T4. Nat (Lond) 227:680–685

    Article  CAS  Google Scholar 

  20. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr (1984) Determination of the immunoreactivity fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72:77–89

    Article  CAS  Google Scholar 

  21. Matzku S, Moldenhauer G, Kalthoff H, Canevari S, Colanaghi M, Schuhmacher J et al (1990) Antibody transport and internalization into tumors. Br J Cancer 62:1–5

    Article  CAS  Google Scholar 

  22. Singh B (1996) Nuclear data sheets for A = 64. Nucl Data Sheets 78:395–546

    Article  CAS  Google Scholar 

  23. Kukis DL, DeNardo GL, DeNardo SJ, Mirick GR, Miers LA, Greiner DP et al (1995) Effect of the extent of chelate substitution to the immunoreactivity and biodistribution of 2IT-BAT-Lym-1 immunoconjugates. Cancer Res 55:878–884

    CAS  Google Scholar 

  24. Zimmermann K, Grunberg J, Honer M, Ametamey S, Schubiger PA, Novak-Hofer I (2003) Targeting of renal carcinoma with 67/64Cu-labeled anti-L1-CAM antibody chCE7: selection of copper ligands and PET imaging. Nucl Med Biol 30:417–427

    Article  CAS  Google Scholar 

  25. Spiridon CI, Sarah Guinn S, Vitetta ES (2004) A comparison of the in vitro and in vivo activities of IgG and F(ab′)2 fragments of a mixture of three monoclonal anti-Her-2 antibodies. Clin Cancer Res 10:3542–3548

    Article  CAS  Google Scholar 

  26. Cole WC, DeNardo SJ, Meares CF, McCall MJ, DeNardo GL, Epstein AL et al (1986) Serum stability of 67Cu chelates: comparison with 111In and 57Co. Int J Radiat Appl Instrum 13:363–368

    Article  CAS  Google Scholar 

  27. Cooper MS, Ma MT, Sunassee K, Shaw KP, Williams JD, Paul RL et al (2012) Comparison of 64Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjug Chem 23(5):1029–1039

    Google Scholar 

  28. Lewis MR, Boswell CA, Laforest R, Buettner TL, Ye D, Connett JM et al (2001) Conjugation of monoclonal antibodies with TETA using activated esters: biological comparison of 64Cu–TETA–1A3 with 64Cu–BAT–2IT–1A3. Cancer Biother Radiopharm 16:483–494

    Article  CAS  Google Scholar 

  29. Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM (2007) 111In-labeled trastuzumab (Herceptin) Modified with nuclear localization sequences (NLS): an auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med 48(8):1358–1368

    Article  Google Scholar 

  30. Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo transchelation of copper-64 from TETA–octreotide to superoxide dismutase in rat liver. Bioconjug Chem 11:527–532

    Article  CAS  Google Scholar 

  31. Mandal AK, Yang Y, Kertesz TM, Arguello JM (2004) Identification of the transmembrane metal binding site in Cu+ transporting PIB-type ATPases. J Biol Chem 279:54802–54807

    Article  CAS  Google Scholar 

  32. Catherine FF, Craig JR, Darell DB, Michael RZ (2000) Radioiodination via d-amino acid peptide enhances cellular retention and tumor xenograft targeting of an internalizing antiepidermal growth factor receptor variant III monoclonal antibody. Cancer Res 60:4453

    Google Scholar 

  33. Jones-Wilson TM, Deal KA, Anderson CJ, McCarthy DW, Kovacs Z, Motekaitis RJ et al (1998) The in vivo behavior of copper-64-labeled azamacrocyclic complexes. Nucl Med Biol 25:523–530

    Article  CAS  Google Scholar 

  34. Kokai Y, Cohen JA, Drebin JA, Greene MI (1987) Stage- and tissue-specific expression of the neu oncogene in rat development. Dev Biol 84:8498–8501

    CAS  Google Scholar 

  35. Dela Cruz JS, Trinh KR, Morrison SL, Penichet ML (2000) Recombinant anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen specificity and cytokine function and demonstrates antitumor activity. J Immunol 165:5112–5121

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Radiopharmaceutical Production Grant, 2010–1012, Deputy of Research and Technology, President Office. The authors would also like to express their deep gratitude to Dr. Dr M. R. Aboudzadeh-Rovais who supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Reza Jalilian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alirezapour, B., Jalilian, A.R., Rasaee, M.J. et al. Optimized preparation and preliminary evaluation of [64Cu]–DOTA–trastuzumab for targeting ErbB2/Neu expression. J Radioanal Nucl Chem 295, 1261–1271 (2013). https://doi.org/10.1007/s10967-012-1939-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1939-z

Keywords

Navigation