Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 2, pp 1321–1329 | Cite as

Simulated response of Cherenkov glass detectors to MeV photons

  • J. P. Hayward
  • Z. W. Bell
  • L. A. Boatner
  • C. L. Hobbs
  • R. E. Johnson
  • J. O. Ramey
  • G. E. Jellison
Article

Abstract

Cherenkov detectors are widely used for particle identification in high-energy physics and for track imaging in astrophysics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we evaluate Cherenkov glass detectors for sensitivity and specificity to MeV photons through simulations using Geant4. The model has been previously compared with measurements of isotopic gamma sources. It includes Cherenkov generation, light transport, light collection, photoelectron production and time response in photomultiplier tubes. The model incorporates measured, wavelength-dependent absorption and refractive index data. Simulations are conducted for glasses the size of fabricated samples and also for the same glasses in monolithic, square-meter-size. Implications for selective detection of MeV photons are discussed.

Keywords

Radiation detection Cherenkov detectors Gamma ray detectors Glass detectors 

References

  1. 1.
    Krizan P (2001) Recent progress in Cerenkov counters. IEEE Trans Nucl Sci 48:941CrossRefGoogle Scholar
  2. 2.
    Korpar S, Dolenec R, Krizan P, Pestotnick R, Stanovnick A (2011) Study of TOF PET using Cherenkov light. Nucl Instrum Methods A 654:532–538CrossRefGoogle Scholar
  3. 3.
    Bell ZW, Boatner LA (2010) Neutron detection via the Cherenkov effect. IEEE Trans Nucl Sci 57:3800CrossRefGoogle Scholar
  4. 4.
    Infrared neutron detector based on the Cherenkov effect. Patent 7,601,965, 13 Oct 2009Google Scholar
  5. 5.
    Activation detector. Patent 7,629,588, 8 Dec 2009Google Scholar
  6. 6.
    Neutron absorption detector. Patent 7,952,075, 31 May 2011Google Scholar
  7. 7.
    Dazeley S, Bernstein A, Bowden NS, Svoboda R (2009) Observation of neutrons with a Gadolinium doped water Cherenkov detector. Nucl Instrum Methods A 607:616–619CrossRefGoogle Scholar
  8. 8.
    Cabrera-Palmer B, Reyna D, Sadler L, Lund J, Kiff S, Bowden N, Bernstein A, and Dazeley S (2009) Advances towards readily deployable antineutrino detectors for reactor monitoring and safeguards. In: Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), 2009 First International Conference on, pp. 1–7Google Scholar
  9. 9.
    Sowerby BD (1971) Cerenkov detectors for low energy gamma rays. Nucl Instrum Methods 97:145–149CrossRefGoogle Scholar
  10. 10.
    Mead CA (1958) Quantum theory of the refractive index. Phys Rev 110:359–369CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Agostinelli S et al (2003) Geant 4—a simulation toolkit. Nucl Instrum Methods A 506:250–303CrossRefGoogle Scholar
  13. 13.
    Hayward JP, Bell ZW, Boatner LA et al (2012) Benchmarking the response of Cherenkov glass samples to counting measurements with isotopic gamma-ray sources. J Radioanalytical Nucl Chem, accepted for publication in June 2012Google Scholar
  14. 14.
    Very high numerical aperture light transmitting device. Patent 5,812,729, 22 Sep 1998Google Scholar
  15. 15.
  16. 16.
    Hamamatsu technical information, www.usa.hamamatsu.com/assets/NewsCorner/ETD/Ultra_Super%20Bialkali.pdf. Accessed June 2012

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • J. P. Hayward
    • 1
  • Z. W. Bell
    • 2
  • L. A. Boatner
    • 2
  • C. L. Hobbs
    • 1
  • R. E. Johnson
    • 1
  • J. O. Ramey
    • 2
  • G. E. Jellison
    • 2
  1. 1.Department of Nuclear EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations