Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 1, pp 143–150

Toxic element composition of multani mitti clay for nutritional safety

Article
  • 294 Downloads

Abstract

Geophagy of multani mitti (MM) clay is very common in central Pakistan especially amongst women. It was therefore mandatory to establish baseline levels of toxic elements in this clay for its safe dietary consumption by consumers of different genders, age groups and physical states. Instrumental neutron activation analysis and atomic absorption spectrometry techniques were used to determine the nutritional safety of MM clay for oral intake. All quantified toxic elements were detected at trace levels with composition in the descending order; Pb > Br > As > Sb > Hg > Cd. Comparison of these elements in MM clay with other clays shows that As, Cd, and Pb, are lowest in MM clay while its Br and Hg contents are high. Highest weekly dietary intakes of As, Br, Cd, Hg, and Sb were found to be 18, 0.05, 1.6, 9.2 and 1.1 % of the respective recommended provisional tolerable weekly intakes. The findings of this study show that As, Br, Cd, Hg and Sb in MM clay are well below the tolerance levels. However its Pb concentration is very high and may pose health concerns. The data presented in this study can be used as national base level guideline for geophagy of MM clay by men, women (normal, pregnant and lactating) and children.

Keywords

Atomic absorption spectrometry (AAS) Clay Instrumental neutron activation analysis (INAA) Multani mitti (MM) Provisional tolerable weekly intake (PTWI) Toxic elements 

References

  1. 1.
    Bergaya F, Theng BKG, Lagaly G (2006) Development in clay science. In: Handbook of clay science, vol 1, Chapt. 11.5. Elsevier publications, Amsterdam, p 717Google Scholar
  2. 2.
    Finkelman RB (2006) Int J Environ Res Public Health 3:338CrossRefGoogle Scholar
  3. 3.
    Mascolo N, Summa V, Tateo F (1999) Appl Clay Sci 15:491CrossRefGoogle Scholar
  4. 4.
    Quig D (1998) Altern Med Rev 3:262Google Scholar
  5. 5.
    Flora SJS, Mehta MM (2008) Ind J Med Res 128:221Google Scholar
  6. 6.
    Njinga RL, Alf B, Sunday O, Muhammad TA (2011) Adv Appl Sci Res 2:370Google Scholar
  7. 7.
    Wasim M (2010) J Radioanal Nucl Chem 285:337CrossRefGoogle Scholar
  8. 8.
    Sastre J, Sahuquillo A, Vidal M, Rauret G (2002) Anal Chim Acta 462:59CrossRefGoogle Scholar
  9. 9.
    Waheed S, Zaidi JH, Ahmad S (2003) J Radioanal Nucl Chem 258:73CrossRefGoogle Scholar
  10. 10.
    Waheed S, Ahmad S, Zaidi JH, Rahman A, Qureshi IH, Saleem M (2001) Radiochim Acta 89:425CrossRefGoogle Scholar
  11. 11.
    Kane JS (2001) Geostand Newslett 25:7CrossRefGoogle Scholar
  12. 12.
    Pszonicki L, Hanna AN, Suschny O (1984) Report on the intercomaprison run soil-7. Report No. 49: IAEA/Rl/112, IAEA, ViennaGoogle Scholar
  13. 13.
    Mee LD, Oregioni B (1991) IAEA/MEL, World-wide Intercomparison of trace element measurements in marine sediments SD-M-2/TM. Report No. 49: IAEA/AL/053, IAEA, ViennaGoogle Scholar
  14. 14.
    Silva PSC, Oliveira SMB, Farias L, Fávaro DIT, Mazzilli BP (2011) Appl Clay Sci 52:145CrossRefGoogle Scholar
  15. 15.
    Kogel JE, Lewis SA (2001) Clays Clay Min 49:387CrossRefGoogle Scholar
  16. 16.
    International Atomic Energy Agency (2003) Nuclear analytical techniques in archaeological investigations. International Atomic Energy Agency, Vienna Technical Reports Series, No. 416: ISSN 0074–1914Google Scholar
  17. 17.
    Vallius H (2007) Geol Surv Finl 45:63Google Scholar
  18. 18.
    Food Standard Agency (2009) Food survey information sheet 01/09Google Scholar
  19. 19.
    Al-Rmalli SW, Jenkins RO, Watts MJ, Haris PI (2010) Environ Health 9:79CrossRefGoogle Scholar
  20. 20.
    Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) J Appl Toxicol 2011(31):95–107Google Scholar
  21. 21.
    Kapaj S, Peterson A, Liber A, hattacharya P (2006) J Environ Sci Health A 41:2399Google Scholar
  22. 22.
    Zhang HH, Yuan HX, Hu YG, Wu ZF, Zhu LA, Zhu L, Li FB, LI DQ (2006) China Environ Pollut 144:492–499CrossRefGoogle Scholar
  23. 23.
    Waheed S, Rahman S, Gill KP (2009) J Radioanal Nucl Chem 279:725CrossRefGoogle Scholar
  24. 24.
    Pavelka S (2004) Physiol Res 53:S81Google Scholar
  25. 25.
    Subramanian KS, Iyengar GV, Okamoto K (eds) (1991) Biological trace element research: multidisciplinary perspectives, ACS Symposium Series. American Chemical Society, Washington DCGoogle Scholar
  26. 26.
    Godt J, Scheidig F, Siestrup CG, Brandenburg VPE, Reich A, Groneber DA (2006) J Occup Med Toxicol 1:22CrossRefGoogle Scholar
  27. 27.
    Khansakorn N, Wongwit W, Tharnpoophasiam P, Hengprasith B, Suwannathon L, Chanprasertyothin S, Sura T, Kaojarern S, Sritara P (2012) J Toxicol. doi:10.1155/2012/356126
  28. 28.
    Center for Disease Control and Prevention (2001) MMWR 50(08): 140–143Google Scholar
  29. 29.
    Lopes CB, Coimbra J, Otero M, Pereira E, Duarte AC, Lin Z, Rocha J (2008) Quím Nova 31:321CrossRefGoogle Scholar
  30. 30.
    Samlafo BV, Aidoo A, Sarsah JBK, Quarshie LA, Serfor-Armah YE (2011) J Environ Earth Sci 3:541Google Scholar
  31. 31.
    Nayak D, Lahiri S (2002) J Radioanal Nucl Chem 254:619–623CrossRefGoogle Scholar
  32. 32.
    World Health Organization (2011) Brief guide to analytical methods for measuring lead in paint, the inter-organization programme for the sound management of chemicals (IOMC) World Health Organization NLM classification: QV 292Google Scholar
  33. 33.
    Ambrose MT, Al-Lozi M, Scott MG (2000) Clin Chem 46:1171Google Scholar
  34. 34.
    Ljung K, Palm B, Grandér M, Vahter M (2011) Food Chem 127:943CrossRefGoogle Scholar
  35. 35.
    WHO Technical Report Series 960 (2011) Evaluation of certain food additives and contaminants, seventy-third report of the Joint FAO/WHO expert committee on food additives, food and agriculture organization of the United NationsGoogle Scholar
  36. 36.
    Cooper RG, Harrison AP (2009) Ind J Occup Environ Med 13:3CrossRefGoogle Scholar
  37. 37.
    World Health Organization (2003) Antimony in drinking-water, background document for development of WHO guidelines for drinking-water quality (GDWQ). World Health Organization WHO/SDE/WSH/03.04/74Google Scholar
  38. 38.
    Toghill KE, Lu M, Compton RG (2011) Int J Electrochem Sci 6:3057Google Scholar
  39. 39.
    Office of Pollution Prevention (2002) Fact sheet, persistent, bioaccumulative and toxic chemical, antimony and antimony compounds, vol 102. Office of Pollution Prevention, ColumbusGoogle Scholar
  40. 40.
    Corte FD, Simonits A, Wispelaere AD, Hoste J, Moens L, Demeter AA (1986) Compilation of K0, Au-factors and related nuclear data for 112 radionuclides of interest in NAA, INW/KFKI interim reportGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Chemistry Division, Directorate of SciencePakistan Institute of Nuclear Science and Technology (PINSTECH)IslamabadPakistan

Personalised recommendations