Journal of Radioanalytical and Nuclear Chemistry

, Volume 293, Issue 2, pp 469–478 | Cite as

Measurement of the neutron capture cross-section of 238U using the neutron activation technique

  • H. Naik
  • S. V. Surayanarayana
  • V. K. Mulik
  • P. M. Prajapati
  • B. S. Shivashankar
  • K. C. Jagadeesan
  • S. V. Thakare
  • D. Raj
  • S. C. Sharma
  • P. V. Bhagwat
  • S. D. Dhole
  • S. Ganesan
  • V. N. Bhoraskar
  • A. Goswami


The 238U(n, γ)239U reaction cross-section at average neutron energy of 3.7 ± 0.3 MeV from the 7Li(p, n)7Be reaction has been determined using activation and off-line γ-ray spectrometric technique. The 238U(n, γ)239U and 238U(n, 2n)237U reaction cross-sections at average neutron energy of 9.85 ± 0.38 MeV from the same 7Li(p, n)7Be reaction have been also determined using the above technique. The experimentally determined 238U(n, γ)239U and 238U(n, 2n)237U reaction cross-sections were compared with the evaluated data of ENDF/B-VII, JENDL-4.0, JEFF-3.1 and CENDL-3.1. The experimental values were found to be in general agreement with the evaluated value based on ENDF/B-VII, and JENDL-4.0 but not with the JEFF-3.1 and CENDL-3.1. The present data along with literature data in a wide range of neutron energies were interpreted in terms of competition between different reaction channels including fission. The 238U(n, γ)239U and 238U(n, 2n)237U reaction cross-sections were also calculated theoretically using the TALYS 1.2 computer code and were also found to be in agreement experimental data.


238U(n, γ)239U and 238U(n, 2n)237U reaction cross-sections 7Li(p, n)7Be reaction Average neutron energy En = 3.7 ± 0.3 MeV and 9.85 ± 0.38 MeV Off-line γ-ray spectrometric technique TALYS calculation 



The authors are thankful to the staff of TIFR-BARC Pelletron facility for their kind co-operation and help to provide the proton beam to carry out the experiment. We are also thankful to Mr. Ajit Mahadkar and Mrs. Dipa Thapa from target laboratory of Pelletron facility at TIFR, Mumbai for providing us the Li and Ta targets. The authors Mr. V. K. Mulik and S. Dhole gratefully acknowledge DAE-BRNS, Mumbai for the financial support given to the Pune University through a BARC-Uni-Pune research project. (No. 2008/36/27-BRNS/1844).


  1. 1.
    Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and TrendsGoogle Scholar
  2. 2.
    MacDonald PE, Todreas N (2000) Annual Project Status Report 2000, MIT-ANP-PR-071, INEFL/EXT-2009-00994Google Scholar
  3. 3.
    Mathieu L et al (2005) Proportion for a very simple thorium molten salt reactor. In: Proceedings of Global International Conference, Paper No 428, TsukubaGoogle Scholar
  4. 4.
    Nuttin A, Heuer D, Billebaud A, Brissot R, Le Brun C, Liatard E, Loiseaux JM, Mathieu L, Meplan O, Merle-Lucotte E, Nifenecker H, Perdu F, David S (2005) Proc Nucl Energy 46:77CrossRefGoogle Scholar
  5. 5.
    Allen TR, Crawford DC (2007) Science and Technology of Nuclear Installations, Article ID 97486Google Scholar
  6. 6.
    Sinha RK, Kakodkar A (2006) Design and development of AHWR: the Indian thorium fueled innovative reactor. Nucl Eng Des 236(7–8):683CrossRefGoogle Scholar
  7. 7.
    Ganesan S (2006) Creation of Indian experimental benchmarks for thorium fuel cycle, IAEA Coordinated research project on “Evaluated data for thorium–uranium fuel cycle,” Third research co-ordination meeting, 30 Jan–2 Feb 2006, Vienna, INDC (NDS)-0494Google Scholar
  8. 8.
    Ganesan S (2006) Third research co-ordination meeting, Vienna, Austria, INDC (NDS)-0494Google Scholar
  9. 9.
    Pronyaev VG (1999) Summary Report of the Consultants’ Meeting on Assessment of Nuclear Data Needs for Thorium and Other Advanced Cycles. INDC (NDS)-408, International Atomic Energy AgencyGoogle Scholar
  10. 10.
    Kuz’minov BD, Manokhin VN (1997) Status of nuclear data for thorium fuel cycle. Nucl Constants 3–4:41Google Scholar
  11. 11.
    Cheng ET, Mathews DR (1979) The influence of nuclear data uncertainties on thorium fusion–fission hybrid blanket nucleonic performance. In: Proceedings of international conference of nuclear cross sections for technology, Knoxville, Tennessee, October 22–26, 1979, p 834, NBS-SP 594, National Bureau of StandardsGoogle Scholar
  12. 12.
    Bartine DE (1979) The use of thorium in fast breeder reactors. In: Proceedings of international conference of nuclear cross sections for technology, Knoxville, Tennessee, October 22–26, 1979, p 119, NBS-SP 594, National Bureau of StandardsGoogle Scholar
  13. 13.
    Pelloni S, Youinou G, Wydler P (1997) Impact of different nuclear data on the performance of fast spectrum based on the thorium–uranium fuel cycle. In: Proceedings of international conference of nuclear data for science and technology, Trieste, May 19–24, 1997, part II, p 1172Google Scholar
  14. 14.
    Batchelor R, Gilboy WB, Jowle JH (1965) Nucl Phys 65:236CrossRefGoogle Scholar
  15. 15.
    Asghar M, Chaffey CM, Moxon MC (1966) Nucl Phys 85:305CrossRefGoogle Scholar
  16. 16.
    Menlok HO, Poenitz WP (1968) Nucl Sci Eng 33:24Google Scholar
  17. 17.
    Drake D, Bergqvist I, McDaniels DK (1971) Phys Lett B 36:557–559CrossRefGoogle Scholar
  18. 18.
    Saussure GD, Silver EG, Perez RB, Ingle R, Weaver H (1973) Nucl Sci Eng 51:385Google Scholar
  19. 19.
    Poenitz WP (1975) Nucl Sci Eng 57:300Google Scholar
  20. 20.
    Liou HL, Chrien RE (1977) Nucl Sci Eng 62:463Google Scholar
  21. 21.
    Wisshak K, Kappeler F (1978) Nucl Sci Eng 66:363Google Scholar
  22. 22.
    Perez RB, de Saussure G, Macklin RL, Halperin J (1979) Phys Rev C 20:528CrossRefGoogle Scholar
  23. 23.
    Mc Daniels DK, Varghese P, Drake DM, Arthur F, Lindholm A, Berquist I, Krumlinde J (1982) Nucl Phys A 384:88CrossRefGoogle Scholar
  24. 24.
    Voignier J, Joly S, Grenier G (1992) Nucl Sci Eng 112:87Google Scholar
  25. 25.
    Leipunskiy AI, Kazachkovskiy OD, Artyukhov GJa, Baryshnikov AI, Belanova TS, Galkov VI, Stavisskiy YuJa, Stumbur EA, Sherman LE (1958) 58GENEVA 15:50Google Scholar
  26. 26.
    Hann RC, Rose B (1959) J Nucl Eng 8:197Google Scholar
  27. 27.
    Panitkin YuG, Tolstikov VA (1972) Atomnaya Energia 33:782CrossRefGoogle Scholar
  28. 28.
    Panitkin YuG, Tolstikov VA (1972) Atomnaya Energia 33:825Google Scholar
  29. 29.
    Panitkin YuG, Tolstikov VA (1975) Atomnaya Energia 39:17Google Scholar
  30. 30.
    Lindner M, Nagle RJ, Landrum JH (1976) Nucl Sci Eng 59:381Google Scholar
  31. 31.
    Poenitz WP, Fawcell LR Jr, Smith DL (1981) Nucl Sci Eng 78:329Google Scholar
  32. 32.
    Buleeva NN, Davletshin AN, Tipunkov OA, Tikhonov SV, Tolstokov VA (1988) Atomnaya Energia 65:348Google Scholar
  33. 33.
    Quang E, Knoll GF (1991) Nucl Sci Eng 110:282Google Scholar
  34. 34.
    Landrum JH, Nagle RJ, Lindner M (1973) Phys Rev C 8:1938CrossRefGoogle Scholar
  35. 35.
    Kaius H, Ackermann A, Scobel W (1979) J Phys G 5:715CrossRefGoogle Scholar
  36. 36.
    Frchaut J, Bertin A, Bois R (1980) Nucl Sci Eng 74:29Google Scholar
  37. 37.
    Kornilov NV, Zhuravlev BV, Sal’nikov OA, Raich P, Nad’ Sh, Darotsi Sh, Sailer K, Chikai I (1980) Atomnaya Energia 49:283Google Scholar
  38. 38.
    Shani G (1983) Ann Nucl Energy 10:473CrossRefGoogle Scholar
  39. 39.
    Wang X, Jiang S, He M, Dong K, Xiao C (2010) Nucl Instrum Methods Phys Res A 621:326CrossRefGoogle Scholar
  40. 40.
    Naik H, Prajapati PM, Surayanarayana SV, Jagadeesan KC, Thakare SV, Raj D, Mulik VK, Sivashankar BS, Nayak BK, Sharma SC, Mukherjee S, Singh S, Goswami A, Ganesan S, Manchanda VK (2011) Eur Phys J A 47:51CrossRefGoogle Scholar
  41. 41.
    Browne E, Firestone RB (1986) Table of Radioactive Isotopes, Shirley VS (ed), Wiley, New YorkGoogle Scholar
  42. 42.
    Browne E (2001) Nuclear Data Sheets 93:763CrossRefGoogle Scholar
  43. 43.
    Firestone RB, Ekstrom LP (2004) Table of radioactive isotopes, (2004)Google Scholar
  44. 44.
    Blachot J, Fiche Ch (1981) Table of Radioactive Isotopes and their main decay characteristics. Ann Phys 6(1981):3–218Google Scholar
  45. 45.
    Blachot J (2005) Nucl Data Sheets 104:967–1110CrossRefGoogle Scholar
  46. 46.
    Singh B, Tuli JK (2005) Nucl Data Sheets 105:109–222CrossRefGoogle Scholar
  47. 47.
    Liskien H, Paulsen A (1975) Neutron production cross sections and energies for the reactions 7Li(p, n)7Be and 7Li(p, n)7Be*. At Data Nucl Data Tables 15:57CrossRefGoogle Scholar
  48. 48.
    Poppe CH, Anderson JD, Davis JC, Grimes SM, Wong C (1976) Phys Rev C 14:438CrossRefGoogle Scholar
  49. 49.
    Meadows JW, Smith DL (1972) Neutrons from proton bombardment of natural lithium, Argonne National Laboratory Report ANL-7983Google Scholar
  50. 50.
    Mukhopadhyaya PK (2001) Personal CommunicationGoogle Scholar
  51. 51.
    The international Reactor Dosimetry File:IRDF (2002) Nuclear Data Section, International Atomic Energy AgencyGoogle Scholar
  52. 52.
    Nagy S, Flynn KF, Gindler JE, Meadows JW, Glendenin LE (1978) Phys Rev C 17:163CrossRefGoogle Scholar
  53. 53.
    Chapman TC, Anzelon GA, Spitale GC, Nethaway DR (1978) Phys Rev C 17:1089CrossRefGoogle Scholar
  54. 54.
    Blons J, Mazur C, Paya D (1975) Phys Rev Lett 35:1749CrossRefGoogle Scholar
  55. 55.
    Chadwick MB et al (2006) ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nucl Data Sheets 107:2931–3060CrossRefGoogle Scholar
  56. 56.
    Shibata K et al (2011) JENDL-4.0: a new library for nuclear science and engineering. Nucl Sci Tech 48(1):1CrossRefGoogle Scholar
  57. 57.
    Koning AJ, et al (2007) The JEFF evaluated data project. In: Proceeding of the International Conference on Nuclear Data for Science and Technology, NiceGoogle Scholar
  58. 58.
    China Evaluated Nuclear Data Library CENDL-3.1, (2009)Google Scholar
  59. 59.
    IAEA-EXFOR Database, at
  60. 60.
    Tan V, Canh Hai N, Trong Hiep N, (1996) INDC (VN)-8Google Scholar
  61. 61.
    Ding D-Z, Guo T-C (1978) HSJ-77106, Review of U-238 capture cross-sections-En = 1 keV to 20 MeVGoogle Scholar
  62. 62.
    Koning AJ, Hilaire S, Duijvestijn MC (2005) In: Haight RC, Chadwick MB, Kawano T, Talou P (ed) Proceeding of the International Conference on Nuclear Data for Science and Technology-ND 2004, AIP, vol 769. Santa Fe, p 1154Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • H. Naik
    • 1
  • S. V. Surayanarayana
    • 2
  • V. K. Mulik
    • 3
  • P. M. Prajapati
    • 4
  • B. S. Shivashankar
    • 5
  • K. C. Jagadeesan
    • 6
  • S. V. Thakare
    • 6
  • D. Raj
    • 7
  • S. C. Sharma
    • 2
  • P. V. Bhagwat
    • 2
  • S. D. Dhole
    • 3
  • S. Ganesan
    • 7
  • V. N. Bhoraskar
    • 3
  • A. Goswami
    • 1
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Nuclear Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Department of PhysicsUniversity of PunePuneIndia
  4. 4.Department of Physics, Faculty of ScienceThe M. S. University of BarodaVadodaraIndia
  5. 5.Department of StatisticsManipal UniversityManipalIndia
  6. 6.Radiopharmaceutical DivisionBhabha Atomic Research CentreMumbaiIndia
  7. 7.Reactor Physics Design DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations