Multielement analysis of a municipal landfill leachate with total reflection X-ray fluorescence (TXRF). A comparison with ICP-OES analytical results

  • Franco CataldoEmail author


A complete analysis of a landfill leachate coming from a landfill site of several years old was performed with a total reflection X-ray fluorescence (TXRF) spectrometer in comparison with an inductively coupled plasma optical emission spectroscopy (ICP-OES). The results of the two analytical techniques are compared and advantages and drawbacks emphasized. The TXRF analytical technique appears a reliable, economic, rapid and simpler technique for the everyday monitoring of the composition of the landfill leachate before the purification treatment and after the treatment to check the quality of the resulting purified water. The TXRF and the ICP-OES analytical techniques were also employed in the analysis of three groundwater samples.


Landfill leachate Groundwater TXRF ICP-OES Multielement analysis 



The author is indebted with Dr. Hagen Stosnach from Bruker for the chemical analysis made at the S2 Picofox TXRF spectrometer and also with Mr. Cristian Vailati also from Bruker for the helpful discussion of the results.


  1. 1.
    Klockenkämper R, Von Bohlen A (1996) X-ray Spectrom 25:156CrossRefGoogle Scholar
  2. 2.
    Klockenkämper R (1997) Total reflection X-ray analysis. Wiley, New YorkGoogle Scholar
  3. 3.
    Wobrauschek P (1998) J Anal Atom Spectrom 13:333CrossRefGoogle Scholar
  4. 4.
    Klockenkämper R, Von Bohlen A (2001) Spectrochim Acta Atomic Spectrosc 56:2005CrossRefGoogle Scholar
  5. 5.
    Hoefler H, Streli C, Wobrauschek P, Óvári M, Záray G (2006) Spectrochim Acta Atomic Spectrosc 61:1135CrossRefGoogle Scholar
  6. 6.
    Streli C (2006) Appl Spectrosc Rev 41:473CrossRefGoogle Scholar
  7. 7.
    Stosnach H (2005) Powder Diffr 20:141CrossRefGoogle Scholar
  8. 8.
    Stosnach H (2005) Anal Sci 21:873CrossRefGoogle Scholar
  9. 9.
    Weiss C, Knoth J, Schwenke H, Geisler H, Lerche J, Schulz R, Ullrich HJ (2000) Microchim Acta 133:65CrossRefGoogle Scholar
  10. 10.
    Tavares GA, Almeida E, de Oliveira JGG, Bendassolli JA, Nascimento Filho VF (2011) J Radioanal Nucl Chem 287:377CrossRefGoogle Scholar
  11. 11.
    Kinimura S, Kaway J (2007) Anal Sci 23:1185CrossRefGoogle Scholar
  12. 12.
    Montero Alvarez A, Estévez Alvarez JR, Padilla Alvarez R (2007) J Radioanal Nucl Chem 273:427CrossRefGoogle Scholar
  13. 13.
    Landsberger S, Kaminsky M, Basunia M, Iskander FY (2000) J Radioanal Nucl Chem 244:35CrossRefGoogle Scholar
  14. 14.
    Bennun L, Sanhueza V (2010) Anal Sci 26:331CrossRefGoogle Scholar
  15. 15.
    Yamaguchi H, Itoh S, Igarashi S, Naitoh K, Hasegawa R (1998) Anal Sci 14:909CrossRefGoogle Scholar
  16. 16.
    Dargie M, Markowicz A, Tajani A, Valkovic V (1997) Fresenius J Anal Chem 357:589CrossRefGoogle Scholar
  17. 17.
    Ruiz RF (2008) Anal Chem 80:8372CrossRefGoogle Scholar
  18. 18.
    Wobrauschek P, Streli C, Kregsamer P, Meirer F, Jokubonis C, Markowicz A, Wegrzynek D, Chinea-Cano E (2008) Spectrochim Acta 63:1404CrossRefGoogle Scholar
  19. 19.
    Tian YH, Liu K, Wu XR, Wang RG (1997) J Radioanal Nucl Chem 217:243CrossRefGoogle Scholar
  20. 20.
    Padilla Alvarez R, Chinea Cano E, Estévez Alvarez JR, Greaves ED (1999) J Radioanal Nucl Chem 240:517CrossRefGoogle Scholar
  21. 21.
    Amartaivan T, Greaves ED, Bernasconi G, Wobrauschek P (1997) J Radioanal Nucl Chem 220:249CrossRefGoogle Scholar
  22. 22.
    Vilhunen JK, von Bohlen A, Schmeling M, Rantanen L, Mikkonen S, Klockenkamper R, Klockow D (1999) Microchim Acta 131:219CrossRefGoogle Scholar
  23. 23.
    Cunha e Silva RM, Almeida E, Valencia EPE, Nascimento Filho VF (2004) J Radioanal Nucl Chem 260:3CrossRefGoogle Scholar
  24. 24.
    Dogan M, Soylak M, Elci L, von Bohlen A (2002) Microchim Acta 138:77CrossRefGoogle Scholar
  25. 25.
    Hoffmann P, Martin Hein TM, Scheuer V, Lieser KH (1990) Mikrochim Acta 11:305CrossRefGoogle Scholar
  26. 26.
    Nishiwaki Y, Shimoyama M, Nakanishi T, Ninomiya T, Nakai I (2006) Anal Sci 22:1297CrossRefGoogle Scholar
  27. 27.
    Kadenkin A, Amberger M, Fittschen UEA, Broekaert JAC (2011) Microchim Acta 173:183CrossRefGoogle Scholar
  28. 28.
    Fernández-Ruiz R, Garcia-Heras M (2008) Spectrochim Acta Atom Spectrosc 63:975CrossRefGoogle Scholar
  29. 29.
    Wehling B, Vandenabeele P, Moens L, Klockenkamper R, von Bohlen A, Van Hooydonk G, de Reu M (1999) Microchim Acta 130:253CrossRefGoogle Scholar
  30. 30.
    Koulouridakis PE, Domazos EA, Galani-Nikolakaki SM, Kallithrakas-Kontos NG (2004) Microchim Acta 146:245CrossRefGoogle Scholar
  31. 31.
    Martinez T, Lartigue J, Avila-Perez P, Zarazua G, Navarrete M, Tejeda S, Ramírez A (2004) J Radioanal Nucl Chem 259:511CrossRefGoogle Scholar
  32. 32.
    Khuder A, Bakir MA, Karjou J, Sawan MKh (2007) J Radioanal Nucl Chem 273:435CrossRefGoogle Scholar
  33. 33.
    Magalhães T, von Bohlen A, Carvalho ML, Becker M (2006) Spectrochim Acta Part B Atom Spectrosc 61:1185CrossRefGoogle Scholar
  34. 34.
    Griesel S, Mundry R, Kakuschke A, Fonfara S, Siebert U, Prange A (2006) Spectrochim Acta Part B Atom Spectrosc 61:1158CrossRefGoogle Scholar
  35. 35.
    Nimis PL, Lazzarin G, Lazzarin A, Skert N (2000) Sci Total Environ 255:97CrossRefGoogle Scholar
  36. 36.
    Espinoza-Quiñones FR, Módenes AN, Palácio SM, Lorenz EK, Oliveira AP (2011) Water Sci Technol 63:1506CrossRefGoogle Scholar
  37. 37.
    Marguí E, Tapias JC, Casas A, Hidalgo M, Queralt I (2010) Chemosphere 80:263CrossRefGoogle Scholar
  38. 38.
    Baun DL, Christensen TH (2004) Waste Manag Res 22:3CrossRefGoogle Scholar
  39. 39.
    Cataldo F, Angelini G (2012) Ozone Sci Eng. Submitted for publicationGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Bioenergy SrlRomeItaly

Personalised recommendations