Radiation formation of Al–Ni bimetallic nanoparticles in aqueous system

  • Alam Abedini
  • Farhad Larki
  • Elias B. Saion
  • Azmi Zakaria
  • M. Zobir Hussein
Article

Abstract

This work concerns the study of Al–Ni bimetallic nanoparticles synthesized by gamma-radiolysis of aqueous solution containing aluminium chloride hexahydrate, nickel chloride hexahydrate, polyvinyl alcohol for capping colloidal nanoparticles, and isopropanol as radical scavenger. While the Al/Ni molar ratio is kept constant, size of the nanoparticles can be well controlled by varying the radiation dose. The products were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). Observations of UV–vis absorption spectra and TEM images showed that as the radiation dose increases from 50 to 100 kGy the particle size decreases and the number particles distribution increases. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation. The EDX and XRD analysis confirmed directly the formation of Al–Ni bimetallic nanoparticles in form of alloy nanoparticles.

Keywords

Bimetallic Al–Ni nanoparticles Gamma-ray induced synthesis Particle size Redox potential 

References

  1. 1.
    Zhang X, Zhou R, Rao W, Shanghai 201800 PR China SPRC, Shanghai 201800 PR C SPR, (2006) Influence of precipitator agents NaOH and NH4OH on the preparation of Fe3O4 nano-particles synthesized by electron beam irradiation. J Radioanal Nucl Chem 270(2):285–289CrossRefGoogle Scholar
  2. 2.
    Bárta J, Pospíšil M, Čuba V (2010) Photo-and radiation-induced preparation of nanocrystalline copper and cuprous oxide catalysts. J Radioanal Nucl Chem 286(3):611–618CrossRefGoogle Scholar
  3. 3.
    Sun Y, Wang Q, Yang S, Sheng G, Guo Z (2011) Characterization of nano-iron oxyhydroxides and their application in UO2 2+ removal from aqueous solutions. J Radioanal Nucl Chem 290:643–648CrossRefGoogle Scholar
  4. 4.
    Ozin G (1996) Synthesis of palladium nanoparticles in water-in-oil microemulsions. Science 271:920–941CrossRefGoogle Scholar
  5. 5.
    Fendler JH, Tian Y (2007) Nanoparticles and nanostructured films: current accomplishments and future prospects. In: Fendler JH (ed) Nanoparticles and nanostructured films: preparation, characterization and applications. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  6. 6.
    Cokoja M, Parala H, Birkner A, Shekhah O, van den Berg MWE, Fischer RA (2007) Organometallic synthesis of colloidal −/−NiAl nanoparticles and selective aluminum oxidation in –Ni1−xAlx nanoalloys. Chem Mat 19(23):5721–5733CrossRefGoogle Scholar
  7. 7.
    Dong S, Hou P, Yang H, Zou G (2002) Synthesis of intermetallic NiAl by SHS reaction using coarse-grained nickel and ultrafine-grained aluminum produced by wire electrical explosion. Intermetallics 10(3):217–223CrossRefGoogle Scholar
  8. 8.
    Glaspell G, Abdelsayed V, Saoud KM, El-Shall MS (2006) Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires: magnetic and catalytic properties. Pure Appl Chem 78(9):1667–1690CrossRefGoogle Scholar
  9. 9.
    Sohn HY, Ryu T, Choi JW, Hwang KS, Han G, Choi YJ, Fang ZZ (2007) The chemical vapor synthesis of inorganic nanopowders. J Manag 59(12):44–49Google Scholar
  10. 10.
    Moussa S, El-Gizawy AS, El-Shall MS (2007) Reactive processing of nanostructured nickel aluminide intermetallics starting from elemental nanopowders. Intermetallics 15(8):1057–1065CrossRefGoogle Scholar
  11. 11.
    Suresh K, Selvarajan V (2010) Effects of plasma parameters and collection region on synthesis of iron and nickel aluminide composite particles during thermal plasma processing. In: 2010 Journal of physics: conference series. IOP Publishing, London, p 012118Google Scholar
  12. 12.
    Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 113(3–4):141–156CrossRefGoogle Scholar
  13. 13.
    Keghouche N, Chettibi S, Latrèche F, Bettahar M, Belloni J, Marignier J (2005) Radiation-induced synthesis of [alpha]-Al2O3 supported nickel clusters: characterization and catalytic properties. Radiat Phys Chem 74(3–4):185–200CrossRefGoogle Scholar
  14. 14.
    Li T, Park HG, Choi SH (2007) [gamma]-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 105(2–3):325–330CrossRefGoogle Scholar
  15. 15.
    Kang YO, Choi SH, Gopalan A, Lee KP, Kang HD, Song YS (2006) Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by [gamma]-ray irradiation. J Non-Cryst Solids 352(5):463–468CrossRefGoogle Scholar
  16. 16.
    Mostafavi M, Delcourt M, Picq G (1993) Study of the interaction between polyacrylate and silver oligomer clusters. Radiat Phys chem 41(3):453–459CrossRefGoogle Scholar
  17. 17.
    Marignier J, Belloni J, Delcourt M, Chevalier J (1985) New microaggregates of non noble metals and alloys prepared by radiation induced reduction. Nature 317:344–345CrossRefGoogle Scholar
  18. 18.
    Naghavi K, Saion E, Rezaee K, Yunus WMM (2010) Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiat Phys Chem 79:1203–1208CrossRefGoogle Scholar
  19. 19.
    Ulanski P, Bothe E, Rosiak JM, von Sonntag C (1994) OH radical induced crosslinking and strand breakage of poly (vinyl alcohol) in aqueous solution in the absence and presence of oxygen. A pulse radiolysis and product study. Macromol Chem Phys 195(4):1443–1461CrossRefGoogle Scholar
  20. 20.
    Torigoe K, Remita H, Beaunier P, Belloni J (2002) Radiation-induced reduction of mixed silver and rhodium ionic aqueous solution. Radiat Phys chem 64(3):215–222CrossRefGoogle Scholar
  21. 21.
    Treguer M, De Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, De Keyzer R (1998) Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. J Phys Chem B 102(22):4310–4321CrossRefGoogle Scholar
  22. 22.
    Stratakis E, Barberoglou M, Fotakis C, Viau G, Garcia C, Shafeev GA (2009) Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Opt Express 17(15):12650–12659CrossRefGoogle Scholar
  23. 23.
    Xiang X, Zu X, Zhu S, Wang L (2004) Optical properties of metallic nanoparticles in Ni-ion-implanted—AlO single crystals. Appl Phys Lett 84:52CrossRefGoogle Scholar
  24. 24.
    Belloni J, Mostafavi M (2001) In: Jonah CD, Rao BSM (eds) Radiation chemistry: present status and future trends. Elsevier, pp 411–452Google Scholar
  25. 25.
    Chen DH, Wu SH (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12(5):1354–1360CrossRefGoogle Scholar
  26. 26.
    Kalbasi RJ, Nourbakhsh AA, Babaknezhad F (2011) Synthesis and characterization of Ni nanoparticles-polyvinylamine/SBA-15 catalyst for simple reduction of aromatic nitro compounds. Catal Commun 12:955–960CrossRefGoogle Scholar
  27. 27.
    Haber JA, Gunda NV, Balbach JJ, Conradi MS, Buhro WE (2000) Chemical syntheses of nanocrystalline nickel aluminides. Chem Mat 12(4):973–982CrossRefGoogle Scholar
  28. 28.
    Zeifert B, Salmones J, Hernández J, Reynoso R, Nava N, Reguera E, Cabañas-Moreno J, Aguilar-Ríos G (2000) X-ray diffraction and Mössbauer characterization of Raney Fe–Ni catalysts. J Radioanal Nucl Chem 245(3):637–639CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Alam Abedini
    • 1
  • Farhad Larki
    • 1
  • Elias B. Saion
    • 1
  • Azmi Zakaria
    • 1
  • M. Zobir Hussein
    • 2
  1. 1.Department of Physics, Faculty of ScienceUniversity Putra MalaysiaSerdangMalaysia
  2. 2.Department of Chemistry, Faculty of ScienceUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations