X-ray absorption fine structure spectroscopic study of uranium nitrides

  • Frederic Poineau
  • Charles B. Yeamans
  • G. W. C. Silva
  • Gary S. Cerefice
  • Alfred P. Sattelberger
  • Kenneth R. Czerwinski
Article

Abstract

Uranium mononitride (UN), sesquinitride (U2N3) and dinitride (UN2) were characterized by extended X-Ray absorption fine structure spectroscopy. Analysis on UN indicate the presence of three uranium shells at distances of 3.46(3), 4.89(5) and 6.01(6) Å and a nitrogen shell at a distance of 2.46(2) Å. For U2N3, two absorbing uranium atoms at different crystallographic positions are present in the structure. One of the uranium atoms is surrounded by nitrogen atoms at 2.28(2) Å and by uranium atoms at 3.66(4) and 3.95(4) Å. The second type of uranium atom is surrounded by nitrogen atoms at 2.33(2) and 2.64(3) Å and by uranium atoms at 3.66(4), 3.95(4) and 5.31(5) Å. Results on UN2 indicate two uranium shells at 3.71(4) and 5.32(5) Å and two nitrogen shells at 2.28(2) and 4.34(4) Å. The lattice parameters of UN, U2N3 and UN2 unit cells were respectively determined to be 4.89(5), 10.62(10) and 5.32(5) Å. Those results are well in agreement with those obtained by X-Ray diffraction analysis.

Keywords

EXAFS Uranium Nitrides Nuclear fuel 

Supplementary material

10967_2011_1551_MOESM1_ESM.pdf (28 kb)
Supplementary material 1 (PDF 28 kb)

References

  1. 1.
    Walter M, Somers J, Fernez-Carretero A, Rothe J (2008) J Nucl Mater 373:90CrossRefGoogle Scholar
  2. 2.
    Rundle RE, Baenziger NC, Wilson AS, McDonald RA (1948) J Am Chem Soc 70:99CrossRefGoogle Scholar
  3. 3.
    Mueller MH, Knott HW (1958) Acta Cryst 11:751CrossRefGoogle Scholar
  4. 4.
    Kuznietz M (1969) Phys Rev 180:476CrossRefGoogle Scholar
  5. 5.
    Sole MJ, Van der Walt CM (1968) Acta Metall 16:501CrossRefGoogle Scholar
  6. 6.
    Black F, Miserque F, Gouder T, Havela L, Rebizant J, Wastin F (2001) J Alloy Compd 315:36CrossRefGoogle Scholar
  7. 7.
    Jones DJ, Roziere J, Allen GC, Tempest PA (1986) J Chem Phys 84:6075CrossRefGoogle Scholar
  8. 8.
    Martin P, Ripert M, Petit T, Reich T, Hennig C, D’Acapito F, Hazemann JL, Proux O (2003) J Nucl Mater 312:103CrossRefGoogle Scholar
  9. 9.
    Purans J, Heisbourg G, Dacheux N, Moisy P, Hubert S (2005) Phys Scripta T115: 925–927Google Scholar
  10. 10.
    Silva GWC, Yeamans CB, Sattelberger AP, Hartmann T, Cerefice GS, Czerwinski KR (2009) Inorg Chem 48:10635CrossRefGoogle Scholar
  11. 11.
    Newville M, Livins P, Yacoby Y, Stern EA, Rehr JJ (1993) Phys Rev B 47:14126CrossRefGoogle Scholar
  12. 12.
    Ressler T (1998) J Synchrotron Rad 5:118CrossRefGoogle Scholar
  13. 13.
    Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621CrossRefGoogle Scholar
  14. 14.
    Ravel B (2001) J Synchrotron Rad 8:314CrossRefGoogle Scholar
  15. 15.
    Silva GWC, Yeamans CB, Ma L, Cerefice GS, Czerwinski KR, Sattelberger AP (2008) Chem Mater 20:3076CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Frederic Poineau
    • 1
  • Charles B. Yeamans
    • 2
  • G. W. C. Silva
    • 3
  • Gary S. Cerefice
    • 4
  • Alfred P. Sattelberger
    • 5
  • Kenneth R. Czerwinski
    • 1
  1. 1.Department of ChemistryUniversity of Nevada Las VegasLas VegasUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Health Physics DepartmentUniversity of Nevada Las VegasLas VegasUSA
  5. 5.Energy Engineering and Systems Analysis DirectorateArgonne National LaboratoryLemontUSA

Personalised recommendations