Advertisement

Biosorption of radiotoxic 90Sr by green adsorbent: dry cow dung powder

  • Nisha Suresh Barot
  • Hemlata Kapil Bagla
Article

Abstract

The present investigation entails the biosorption studies of radiotoxic Strontium (90Sr), from aqueous medium employing dry cow dung powder (DCP) as an indigenous, inexpensive and, eco-friendly material without any pre or post treatments. The Batch experiments were conducted employing 90Sr(II) as a tracer and the effect of various process parameters such as optimum pH, temperature, amount of resin, time of equilibration, agitation speed and concentration of metal ions have been studied. The kinetic studies were carried out employing various models but the best fitting model was Lagergren pseudo-second order model with high correlation coefficient R 2 value of 0.999 and cation exchange capacity of DCP was found to be 9.00 mg/g. The thermodynamic parameters for biosorption were evaluated as ΔG° = −5.560 kJ/mol, ΔH° = −6.396 kJ/mol and ΔS° = 22.889 J/mol K, which indicated spontaneous and exothermic process with high affinity of Sr(II) for DCP.

Keywords

Biosorption Radiotoxic strontium Dry cow dung powder Green adsorbent 

Notes

Acknowledgments

We thank Gemmological Institute of India, Mumbai, for providing EDAX facility. We are also thankful to Dr. Raju Apte, Head of Gaushala, Keshav Shrushti, Thane, for providing DCP.

References

  1. 1.
    Argonne National Laboratory, EVS Human Health Fact Sheet, Nov 2006Google Scholar
  2. 2.
  3. 3.
  4. 4.
    Luo H, Dai S, Bonnesen P (2004) Anal Chem 76(10):2773–2779CrossRefGoogle Scholar
  5. 5.
    Horwitz E, Chiarizia R, Dietz M (1992) Sol Extr Ion Exch 10(2):313–336CrossRefGoogle Scholar
  6. 6.
    Yu L, Chakraboty S, Basu J (2006) Sep Purif Technol 50(3):336–341CrossRefGoogle Scholar
  7. 7.
    Maresova J, Pipiska M, Rozloznik M, Hornik M, Remenarova L, Augustin J (2010) Desalination. doi: 10.1016/j.desal.2010.08.014
  8. 8.
    Jia Y, Hub Y, Tiana Q, Shaoa Lib J, Safarikovac M, Safarik I (2010) Sep Sci Technol 45:1499–1504CrossRefGoogle Scholar
  9. 9.
    Mashkani S, Ghazvini M (2009) Bioresour Technol 100(6):1915–1921CrossRefGoogle Scholar
  10. 10.
    Bochkarev G, Pushkareva G (2009) J Mining Sci 45(3):290–295CrossRefGoogle Scholar
  11. 11.
    Petrova A, Flower A, Krip I, Shimchuk T, Petrushka I (2008) Radiochemistry 50(5):434–438CrossRefGoogle Scholar
  12. 12.
    Dabbagh R, Ghafourian H, Bhagvand A, Nabi G, Riahi H, Ahmadi Faghih M (2007) J Radioanal Nucl Chem 272(1):53–59CrossRefGoogle Scholar
  13. 13.
    Dabbagh R, Ghafourian H, Bhagvand A, Nabi G, Riahi H (2007) J Environ Sci Tech 33Google Scholar
  14. 14.
    Chakraborty D, Maji S, Bandopadhyay A, Basu S (2007) Bioresour Technol 98(15):2949–2952CrossRefGoogle Scholar
  15. 15.
    Shaukat M, Sarwar M, Qadeer R (2005) J Radioanal Nucl Chem 265:73–79CrossRefGoogle Scholar
  16. 16.
    Bagla H, Barot N (2009) Green Chem Lett Rev 2(4):217–221CrossRefGoogle Scholar
  17. 17.
    Vogel I (1975) Textbook of quantitative inorganic analysis, 3rd edn. Longman Green & Co., LondonGoogle Scholar
  18. 18.
    Lieser K (2001) Nuclear & radiochemistry: fundamentals and applications, 2nd edn. Wiley, GermanyGoogle Scholar
  19. 19.
    Waranusantigul P, Pokethitiyook P, Krutrachue M, Upatham E (2003) Environ Pollut 125:385–392CrossRefGoogle Scholar
  20. 20.
    Saiffudin N, Raziah A (2007) J Appl Sci Res 3(12):2091–2099Google Scholar
  21. 21.
    Singh K (2005) J Indian Chem Soc 82:342–346Google Scholar
  22. 22.
    Ahalya N, Kanamadi RD, Ramchandra T (2005) Electron J Biotech 8(3):323–393Google Scholar
  23. 23.
    Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar 24:1–39Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Department of Nuclear & RadiochemistryKishinchand Chellaram CollegeMumbaiIndia

Personalised recommendations