14C studies in the vicinity of the Czech NPPs

  • I. SvetlikEmail author
  • M. Fejgl
  • K. Turek
  • V. Michalek
  • L. Tomaskova


The Czech Republic has two nuclear power plants (NPPs) equipped with light water pressurized reactors (LWPR). Annual sampling of biota for 14C activity monitoring by Nuclear Physics Institute in cooperation with the National Institute of Radiation Protection started in 2002. We present the results of biota monitoring covering two sampling periods 2002–2005 and 2007–2008. The considerable problem in the case of biota sampling for monitoring purpose is given by a relatively short period of biota accumulation for prevailing types of biota samples (leaves of deciduous trees or agricultural plants), which usually lasts from several weeks to 2 months. The short period of sample accumulation can also be partly overlapped by a service period of reactor outage in a given NPP. On the base of our several years’ experiences we have changed a type of the sampled material to reduce variations of observed activities and to precise reference levels in the exposed and reference sites.


Radiocarbon in biota Nuclear power plants 14C monitoring Sampling material selection 



This work was funded by internal grant of the Nuclear Physics Institute AS CR (No. AV0Z 10480505) and by National Radiation Protection Institute (grants No. JC 03/2006 and JC 05/2008). The authors acknowledge for the 13C determinations of nettle samples performed by Dr. István Futó from the Institute of Nuclear Research HAS (ATOMKI) in Debrecen, Hungary.


  1. 1.
    Svetlik I, Molnár M, Svingor E, Rinyu L, Futó I, Michalek V (2007) Biomonitoring of 14C in the vicinity of NPPs. Regional and global aspects of radiation protection (Proc). IRPA, Brasov, pp 24–28Google Scholar
  2. 2.
    Hanslík E, Ivanovová D, Juranová E, Šimonek P, Jedináková-Křížová V (2009) Monitoring and assessment of radionuclide discharges from Temelín nuclear power plant into the Vltava River (Czech Republic). J Environ Radioact 100(2):131–138CrossRefGoogle Scholar
  3. 3.
    Thinova L, Trojek T (2009) Data analysis from monitoring of radionuclides in the nuclear power plant Temelin ecosystem area. Appl Radiat Isot 67(7–8):1503–1508CrossRefGoogle Scholar
  4. 4.
    Lal D, Peters B (1967) Cosmic ray produced radioactivity on the earth. In: Flügge S (ed) Encyclopaedia of physics. Springer Verlag, New YorkGoogle Scholar
  5. 5.
    Burchuladze AA, Pagava SV, Povinec P, Togonidze GI, Usačev S (1980) Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287:320–322CrossRefGoogle Scholar
  6. 6.
    United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Exposures from natural and man-made sources of radiation. Report to the General Assembly, part 1Google Scholar
  7. 7.
    Kunz C (1985) Carbon-14 discharge at three light-water reactors. Health Phys 49:25–35CrossRefGoogle Scholar
  8. 8.
    Electrical Power Research Institute (1995) Characterization of C-14 generated by the nuclear power industry. Report EPRI TR-105715, 1995, Palo AltoGoogle Scholar
  9. 9.
    Eisma R, Vermeulen AT, Borg K (1995) 14CH4 emissions from nuclear power plants in Northwestern Europe. Radiocarbon 37(2):475–483Google Scholar
  10. 10.
    Uchrin G, Hertelendi E, Volent G, Slavik O, Moravek J, Kobal I, Vokal B (1998) 14C measurements at PWR-type nuclear power plants in three middle European countries. Radiocarbon 40(1):439–446Google Scholar
  11. 11.
    Smith G, Merino J, Kerrigan E (2002) Review of C-14 inventory for the SFR facility. 2002:14 SSI report of Swedish Radiation Protection AuthorityGoogle Scholar
  12. 12.
    Pintér T, Molnár M (1997) Radiocarbon in primary water, stack air and waste streams of Paks, Bohunice and Krsko Nuclear Power Plants. In: Proceedings of the 3rd International seminar on primary and secondary side water chemistry of Nuclear Power Plants. 16–20 Sept 1997, BalatonfüredGoogle Scholar
  13. 13.
    Rajec P, Matel L, Drahošová L, Nemčovič V (2011) Monitoring of the 14C concentration in the stack air of the nuclear power plant VVER Jaslovske Bohunice. J Radioanal Nucl Chem 288(1):93–96CrossRefGoogle Scholar
  14. 14.
    Nydal R, Lövseth K (1965) Distribution of radiocarbon from nuclear tests. Nature 206:1029–1031CrossRefGoogle Scholar
  15. 15.
    Meijer HAJ, van der Plicht J, Gislefoss JS, Nydal R (1995) Comparing long-Term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations. Radiocarbon 37(1):39–50Google Scholar
  16. 16.
    Levin I, Münnich KO, Weiss W (1980) The effect of anthropogenic CO2 and 14C sources on the dilution of 14C in atmosphere. Radiocarbon 22(2):379–381Google Scholar
  17. 17.
    Levin I, Graul R, Trivett NBA (1995) Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B:23–34Google Scholar
  18. 18.
    Seg M, Levin I, Schoch-Fischer H, Münnich M, Kromer B, Tschiersch J, Münnich KO (1983) Anthropogenic 14C variations. Radiocarbon 25(2):583–592Google Scholar
  19. 19.
    Burchuladze AA, Chudý M, Eristavy IV, Pagava SV, Povinec P, Šivo A, Togonidze GI (1989) Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31(3):771–776Google Scholar
  20. 20.
    Hesshaimer V, Heimann V, Levin I (1994) Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370:201–203CrossRefGoogle Scholar
  21. 21.
    Levin I, Kromer B (1997) In: Trends A compendium of data on global change. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge (δ14CO2 records from Schauinsland) Available at: Accessed 17 July 2009
  22. 22.
    Levin I, Kromer B (2004) The tropospheric 14CO2 level in mid-latitudes of the northern hemisphere (1959–2003). Radiocarbon 46(3):1261–1272Google Scholar
  23. 23.
    Beláň T, Chudý M, Ďurana L, Grgula M, Holý K, Levaiová D, Povinec P, Richtarikova M, Sivo A (1992) In: Povinec P (ed) Rare nuclear processes. World Scientific, Singapore, pp 345–366Google Scholar
  24. 24.
    Suess HE (1955) Radiocarbon concentration in modern wood. Science 122:415–417CrossRefGoogle Scholar
  25. 25.
    Levin I, Hammer S, Kromer B, Meinhardt F (2008) Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci Total Environ 391(2–3):211–216Google Scholar
  26. 26.
    Kuc T, Zimnoch M (1998) Changes of the CO2 sources and sinks in a polluted urban area (southern Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon 40(1):417–423Google Scholar
  27. 27.
    Levin I, Hesshaimer V (2000) Radiocarbon–a unique tracer of global carbon cycle dynamics. Radiocarbon 46(1):69–80Google Scholar
  28. 28.
    Molnár M, Bujtás T, Svingor É, Futó I, Svetlik I (2007) Monitoring of atmospheric excess 14C around Paks nuclear power plant, Hungary. Radiocarbon 49(2):1031–1043Google Scholar
  29. 29.
    Svetlik I, Povinec P, Molnár M, Váňa M, Šivo A, Bujtás T (2010) Radiocarbon in the air of Central Europe: long-term investigations. Radiocarbon 52(2–3):823–834Google Scholar
  30. 30.
    Svetlik I, Povinec P, Molnar M, Meinhardt F, Michalek V, Simon J, Svingor E (2010) Estimation of long-term trends in the tropospheric 14CO2 activity concentration. Radiocarbon 52(2–3):815–822Google Scholar
  31. 31.
    Povinec P, Šivo A, Chudý M (1986) Seasonal variations of anthropogenic radiocarbon in the atmosphere. Nucl Instrum Methods B 17:556–559CrossRefGoogle Scholar
  32. 32.
    Povinec P, Chudý M, Šivo A (1986) Anthropogenic radiocarbon: past, present and future. Radiocarbon 28:668–672Google Scholar
  33. 33.
    Svetlik I, Molnár M, Váňa M, Michálek V, Stefanov P (2009) Estimation of 14CO2 amount in the atmosphere. J Radioanal Nucl Chem 281(1):137–141CrossRefGoogle Scholar
  34. 34.
    Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele LP, Wagenbach D, Weller R, Worthy DE (2010) Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B. Chem Phys Meteorol 62(1):26–46CrossRefGoogle Scholar
  35. 35.
    Povinec P, Šivo A, Šimon J, Holý K, Chudý K, Richtáriková M, Morávek J (2008) Impact of the Bohunice nuclear power plant on atmospheric radiocarbon. Appl Radiat Isot 66:1686–1690CrossRefGoogle Scholar
  36. 36.
    Povinec P, Chudý M, Šivo A, Šimon J, Holý K, Richtáriková M (2009) Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovakia. J Environ Radioact 100(2):125–130CrossRefGoogle Scholar
  37. 37.
    Xiang YY, Wang K, Zhang Y, Cao ZG, Ye JD, Wang HF (2007) Radioactivity monitoring in environmental water and air around QNPP. Nucl Sci Tech 18(5):316–320CrossRefGoogle Scholar
  38. 38.
    Bronić IK, Obelić B, Horvatinčić N, Barešić J, Sironić A, Minichreiter K (2010) Radiocarbon application in environmental science and archaeology in Croatia. Nucl Instrum Methods A 619(1–3):491–496Google Scholar
  39. 39.
    Woo HJ, Cho SY, Chun SK, Kim NB, Kang DW, Kim EH (1999) Sample treatment techniques for the determination of environmental radiocarbon in a nuclear power station area. J Radioanal Nucl Chem 239(3):533–538CrossRefGoogle Scholar
  40. 40.
    Hertelendi E, Uchrin G, Ormai P (1989) 14C release in various chemical forms with gaseous effluents from the Paks nuclear power plant. Radiocarbon 31(3):754–761Google Scholar
  41. 41.
    Roussel-Debet S, Gontier G, Siclet F, Fournier M (2006) Distribution of carbon 14 in the terrestrial environment close to French nuclear power plants. J Environ Radioact 87:246–259CrossRefGoogle Scholar
  42. 42.
    Levin I, Kromer B, Barabas M, Munnich KO (1988) Environmental distribution and long-term dispersion of reactor 14CO2 around two German nuclear power plants. Health Phys 54(2):149–156CrossRefGoogle Scholar
  43. 43.
    Stenström K, Skog G, Thornberg C, Erlandsson B, Hellborg R, Mattsson S, Persson P (1998) 14C levels in the vicinity of two Swedish nuclear power plants and at two clean-air sites in southernmost Sweden. Radiocarbon 40(1):433–438Google Scholar
  44. 44.
    Stenström K, Erlandsson B, Hellborg R, Wiebert A, Skog G (1996) Environmental levels of carbon-14 around a Swedish nuclear power plant measured with accelerator mass spectrometry. Nucl Instrum Methods Phys Res B 113:474–476CrossRefGoogle Scholar
  45. 45.
    Loosli HH, Oeschger H (1989) 14C in the environment of Swiss nuclear installations. Radiocarbon 31(3):747–753Google Scholar
  46. 46.
    Obelić B, Krajcar-Bronić I, Srdoč D, Horvatinčić N (1986) Environmental 14C levels around the 632 MWe nuclear power plant Krško in Yugoslavia. Radiocarbon 28(2A):644–648Google Scholar
  47. 47.
    Milton GM, Kramer SJ, Brown RM, Repta CJW, King KJ, Rao RR (1995) Radiocarbon dispersion around Canadian nuclear facilities. Radiocarbon 37(2):485–496Google Scholar
  48. 48.
    WHO (2002) WHO monographs on selected medicinal plants vol 2. WHO, GenevaGoogle Scholar
  49. 49.
    Kubát K (2002) The key to the flora of the Czech Republic. Academia, PragueGoogle Scholar
  50. 50.
    Gupta SK, Polach HA (1985) Radiocarbon dating practices at ANU. ANU, CanberraGoogle Scholar
  51. 51.
    Singleton DL, Sanchez AL, Woods C (2002) A comparison of two techniques to determine carbon-14 in environmental samples. J Radioanal Nucl Chem 251(3):353–357CrossRefGoogle Scholar
  52. 52.
    Cook GT, Scott EM, MacKenzie AB, Naysmith FH, Isogai K, Kershaw PJ, Anderson R, Naysmith P (2004) Reconstructing the history of 14C discharges from Sellafield Part 2. Aquatic discharges. J Radioanal Nucl Chem 260(2):239–247CrossRefGoogle Scholar
  53. 53.
    Schneider RJ, McNihol AP, Nadeau MJ, Reden KF (1995) Measurements of the axalic acid II/oxalic acid I ratio as a quality control parameter at NOSAMS. Radiocarbon 37(2):693–696Google Scholar
  54. 54.
    Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19(3):355–363Google Scholar
  55. 55.
    Curie LA (1995) Nomenclature in evaluation of analytical methods including detection, quantification capabilities. (IUPAC Recommendation 1995). Pure Appl Chem 67(10):1699–1723CrossRefGoogle Scholar
  56. 56.
    Yasuike K, Yamada Y, Komura K (2008) Comparison of 14C levels in urban area with background levels in the atmospheric CO2 in Kanazawa, Ishikawa prefecture, Japan. J Radioanal Nucl Chem 277(2):389–398CrossRefGoogle Scholar
  57. 57.
    Dias CM, Stenström K, Leão ILB, Santos RV, Nícoli IG, Skog G, Ekström P, Corrêa RS (2009) 14CO2 dispersion around two PWR nuclear power plants in Brazil. J Environ Radioact 100:574–580CrossRefGoogle Scholar
  58. 58.
    Magnusson A, Stenström K, Skog G, Adliene D, Adlys G, Hellborg R, Ovariu A, Zakaria M, Rääf C, Mattsson S (2004) Levels of 14C in the terrestrial environment in the vicinity of two European nuclear power plants. Radiocarbon 46(2):863–868Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • I. Svetlik
    • 1
    • 2
    Email author
  • M. Fejgl
    • 2
  • K. Turek
    • 1
  • V. Michalek
    • 2
  • L. Tomaskova
    • 1
  1. 1.DRDNuclear Physics Institute AS CRPragueCzech Republic
  2. 2.National Radiation Protection InstitutePragueCzech Republic

Personalised recommendations