Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 291, Issue 1, pp 257–260 | Cite as

Production of 37Ar in The University of Texas TRIGA reactor facility

  • Christine M. Egnatuk
  • Justin Lowrey
  • Steven R. Biegalski
  • Theodore Bowyer
  • Derek Haas
  • John Orrell
  • Vincent Woods
  • Martin Keillor
Article

Abstract

The detection of 37Ar is important for On-Site Inspections (OSI) for the Comprehensive Nuclear-Test-Ban Treaty monitoring. In an underground nuclear explosion this radionuclide is produced by 40Ca(n,α)37Ar reaction in surrounding soil and rock. With a half-life of 35 days, 37Ar provides a signal useful for confirming the location of an underground nuclear event. An ultra-low-background proportional counter developed by Pacific Northwest National Laboratory is used to detect 37Ar, which decays via electron capture. The irradiation of Ar gas at natural enrichment in the 3L facility within the Mark II TRIGA reactor facility at The University of Texas at Austin provides a source of 37Ar for the calibration of the detector. The 41Ar activity is measured by the gamma activity using an HPGe detector after the sample is removed from the core. Using the 41Ar/37Ar production ratio and the 41Ar activity, the amount of 37Ar created is calculated. The 41Ar decays quickly (half-life of 109.34 min) leaving a radioactive sample of high purity 37Ar and only trace levels of 39Ar.

Keywords

37Ar CTBT On-Site Inspections Radioargon 

Notes

Acknowledgments

This research was performed under appointment to the U.S. Department of Energy Nuclear Nonproliferation International Safeguards Graduate Fellowship Program sponsored by the National Nuclear Security Administration’s Office of Nonproliferation and International Security.

References

  1. 1.
    Bowyer TW, Schlosser C, Abel KH, Auer M, Hayes JC, Heimbinger TR, McIntyre JJ, Panisko ME, Reeder PL, Satorius H, Schulze J, Weiss W (2002) J Environ Radioact 59:139–151CrossRefGoogle Scholar
  2. 2.
    Biegalski SR, Saller T, Helfand J, Biegalski KMF (2010) J Radioanal Nucl Chem 284:663–668CrossRefGoogle Scholar
  3. 3.
    Comprehensive Nuclear-Test-Ban Treaty, United Nations General Assembly Resolution Number 50/245 (1996) UN, New York, USAGoogle Scholar
  4. 4.
    Aalseth CE, Day AR, Haas DA, Hoppe EW, Hyronimus BJ, Keillor ME, Mace EK, Orrell JL, Seifert A, Woods VT (2010) Nucl Inst Meth A. doi: 10.1016/j.nima.2010.09.135
  5. 5.
    Trellue HR (1998) Los Alamos National Laboratory document LA-T-13514Google Scholar
  6. 6.
    Stacey WM (2001) Nuclear reactor physics. Wiley, New YorkGoogle Scholar
  7. 7.
    Haas DA, Biegalski SR, Foltz Biegalski KM (2009) J Radioanal Nucl Chem 282:677–680CrossRefGoogle Scholar
  8. 8.
    Nakagawa T (1994) JENDL-3.2, JAERI. http://atom.kaeri.re.kr

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Christine M. Egnatuk
    • 1
  • Justin Lowrey
    • 1
  • Steven R. Biegalski
    • 1
  • Theodore Bowyer
    • 2
  • Derek Haas
    • 2
  • John Orrell
    • 2
  • Vincent Woods
    • 2
  • Martin Keillor
    • 2
  1. 1.Nuclear and Radiation Engineering Program, Mechanical Engineering DepartmentThe University of Texas at Austin AustinUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations