Journal of Radioanalytical and Nuclear Chemistry

, Volume 289, Issue 2, pp 611–615 | Cite as

Alpha spectrometry and secondary ion mass spectrometry of electrodeposited uranium films

  • Jozef Kuruc
  • Dávid Harvan
  • Dušan Galanda
  • L’ubomír Mátel
  • Monika Jerigová
  • Dušan Velič
Article

Abstract

Electrodeposited natural uranium films prepared by electrodeposition from solution of uranyl nitrate UO2(NO3)2·6H2O on stainless steel discs in electrodeposition cell. Solutions of NaHSO4, and Na2SO4 and electric current from 0.50 up to 0.75 A were used in this study. Recalculated weights and surface’s weights of 238U from the alpha activities and secondary ion mass spectrometry (SIMS) intensities resulted in a linear regression. A dependency between of 238U surface’s weights recalculated from alpha activities and signal intensity of 238U in SIMS was investigated in order to determine a potential of SIMS in quantitative analysis of surface samples containing uranium. In the SIMS spectra of electrodeposited uranium films we found that upper layer consist not only from isotopes of uranium (ions 234U+, 235U+, and 238U+). In the positive polarity SIMS spectra, various molecules ions of uranium were suggested as UH+, UH2+, UO+, UOH+, UO2+, UO2H+, UO2H2+, as well as possibly ions UNO+ and UNOH+.

Keywords

238Alpha spectroscopy Secondary ion mass spectrometry Electrodeposition Qualitative chemical analysis 

References

  1. 1.
    Harvan D, Strišovská J, Kuruc J (2009) Application of modern mass spectrometric methods in radioanalysis. In: Kuruc J, Mátel L’ (eds) Quality assurance in the radiochemical laboratories ZAKVARAL’09 [Zabezpečenie kvality v rádiochemických laboratóriách ZAKVARAL’09]. Omega Info, Bratislava, pp 69–104Google Scholar
  2. 2.
    Becker JS (2007) Inorganic mass spectrometry: principles and applications. Wiley-VCH Verlag GmbH, New YorkGoogle Scholar
  3. 3.
    Barshick C, Duckworth D, Smith D (2001) Inorganic mass spectrometry: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    Bubert H, Jennett H (2011) Surface and thin film analysis: a compendium of principles, instrumentation, and applications, 2nd edn. Wiley-VCH Verlag GmbH, New YorkGoogle Scholar
  5. 5.
    Aranyosiova M (2001) Total chemical analysis of materials—secondary ion mass spectrometry (SIMS) [Totálna chemická analýza materiálov – hmotnostná spektrometria sekundárnych iónov]. ChemZi 2:52–53Google Scholar
  6. 6.
    Ecker KH et al (2001) Antimony implanted in silicon—a thin layer reference material for surface analysis. Nucl Instr Meth Phys Res Sect B 175–177:797–801CrossRefGoogle Scholar
  7. 7.
    Gerlach DC et al (2006) Secondary ionization mass spectrometric analysis of impurity element isotope ratios in nuclear reactor materials. Appl Surf Sci 252:7041–7044CrossRefGoogle Scholar
  8. 8.
    Zartman ER, Richardson SH (2005) Evidence from kimberlitic zircon for a decreasing mantle Th/U since the Archean. Chem Geol 220:263–283CrossRefGoogle Scholar
  9. 9.
    McDaniel FD et al (2002) Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry. Nucl Instrum Meth Phys Res Sect B 190:826–830CrossRefGoogle Scholar
  10. 10.
    Miley GH, Narne G, Woo T (2005) Use of combined NAA and SIMS analyses for impurity level isotope detection. J Radioanal Nucl Chem 263:691–696CrossRefGoogle Scholar
  11. 11.
    Hubert RL et al (2005) Study of the Pd–Rh interdiffusion by three complementary analytical techniques: PIXE, RBS and ToF-SIMS. Nucl Instr Meth Phys Res Sect B 24:420–424CrossRefGoogle Scholar
  12. 12.
    Brison J et al (2006) Study of the Pd–Rh interdiffusion by ToF-SIMS, RBS and PIXE: semi-quantitative depth profiles with MCs+ clusters. Appl Surf Sci 252:7038–7040CrossRefGoogle Scholar
  13. 13.
    Pomies C et al (2004) 207Pb/206Pb and 238U/230Th dating of uranium migration in carbonate fractures from the Palmottu uranium ore (southern Finland). Appl Geochem 19:273–288CrossRefGoogle Scholar
  14. 14.
    Layne GD, Sims KW (2000) Secondary ion mass spectrometry for the measurement of 232Th/230Th in volcanic rocks. Int J Mass Spectrom 203:187–198CrossRefGoogle Scholar
  15. 15.
    Zhu XK et al (1998) SIMS analysis of U–Pb isotopes in monazite: matrix effects. Chem Geol 144:305–312CrossRefGoogle Scholar
  16. 16.
    Guan Y, Huss GR, Leshin LA (2004) SIMS analyses of Mg, Cr, and Ni isotopes in primitive meteorites and short-lived radionuclides in the early solar system. Appl Surf Sci 231–232:899–902CrossRefGoogle Scholar
  17. 17.
    Fahey AJ, Ritchie NWM, Newbury DE, Small JA (2010) The use of lead isotopic abundances in trace uranium samples for nuclear forensics analysis. J Radioanal Nucl Chem 284:575–581CrossRefGoogle Scholar
  18. 18.
    Martinot L, Lopes L, Jerome C, Marien J (2002) Electrochemistry of lanthanum and uranium chlorides in organic media. Deposition of lanthanum and uranium. J Radioanal Nucl Chem 253:407–412CrossRefGoogle Scholar
  19. 19.
    Hidaka H (1999) Isotopic study of natural fission reactors at Oklo and Bangombe, Gabon. J Radioanal Nucl Chem 239:53–58CrossRefGoogle Scholar
  20. 20.
    Amaral A et al (1997) Perspectives of uranium and plutonium analysis in urine samples by secondary ion mass spectrometry. J Radioanal Nucl Chem 226:41–45CrossRefGoogle Scholar
  21. 21.
    Šáro Š (1983) Detection and spectrometry of alpha and beta radiation [Detekcia a spektrometria žiarenia alfa a beta]. Alfa, BratislavaGoogle Scholar
  22. 22.
    Janda J, Sládek P, Sas D (2010) Electrodeposition of selected alpha-emitting radionuclides from oxalate-ammonium sulfate electrolyte and measured by means of solid-state alpha spectrometry. J Radioanal Nucl Chem 286:687–691CrossRefGoogle Scholar
  23. 23.
    Luskus CA (1988) Electroplating versus microprecipitation of the actinides in alpha-spectroscopic analysis. J Radioanal Nucl Chem 234:287–292CrossRefGoogle Scholar
  24. 24.
    Lehto J, Hou X (2011) Chemistry and analysis of radionuclides: laboratory techniques and methodology. Wiley-VCH Verlag GmbH, New YorkGoogle Scholar
  25. 25.
    L′Annunziata MF (2003) Handbook of radioactivity analysis, 2nd edn. Academic Press, New YorkGoogle Scholar
  26. 26.
    Galanda D (2006) Preparation of alpha emmiters by electrodeposition. In: Kuruc J, Mátel L’ (eds) Chemical and radioactive contaminants of the environment. Lectures, seminars and laboratory works [Chemické a rádioaktívne kontaminanty životného prostredia. Prednášky, semináre a laboratórne cvičenia]. Omega Info, BratislavaGoogle Scholar
  27. 27.
    Americium, plutonium and uranium in water (1999) Eichrom industries, Inc. analytical procedures, ACW03Google Scholar
  28. 28.
    Strišovská J et al (2011) Surface’s weights of electrodeposited thorium samples determined by alpha spectrometry. J Radioanal Nucl Chem 288:531–535CrossRefGoogle Scholar
  29. 29.
    Strohalm M et al (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651CrossRefGoogle Scholar
  30. 30.
    Strohalm M et al (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spec 22:905–908CrossRefGoogle Scholar
  31. 31.
    Wieser ME (2006) Atomic weights of the elements 2005. Pure Appl Chem 78:2051–2066CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Jozef Kuruc
    • 1
  • Dávid Harvan
    • 1
  • Dušan Galanda
    • 1
  • L’ubomír Mátel
    • 1
  • Monika Jerigová
    • 2
    • 3
  • Dušan Velič
    • 2
    • 3
  1. 1.Department of Nuclear Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  2. 2.Department of Physical and Theoretical Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  3. 3.International Laser CenterBratislavaSlovak Republic

Personalised recommendations