A new method for the analysis of titanium, barium, and arsenic in obsidian via epithermal neutron activation analysis

  • M. E. Coleman
  • M. D. Glascock
  • J. D. Robertson


A new instrumental epithermal neutron activation analysis procedure to quantitatively determine titanium, barium, and bromine in obsidian with improved sensitivity has been developed. The advantage of epithermal activation for Ti, Ba, and Br is demonstrated with multiple geological standards and the ability to determine arsenic in obsidian is demonstrated. The results for titanium are compared to previous electron-microprobe results for Kenyan obsidian.


Epithermal neutron activation analysis Obsidian Archaeometry 



The authors are grateful for the African obsidian samples provided by Dr. Stan Ambrose and Dr. Jeff Ferguson. This work was supported in part by financial assistance from U.S. National Science Foundation grant 0814304.


  1. 1.
    Glascock MD (2002) Acc Chem Res 35:611–617CrossRefGoogle Scholar
  2. 2.
    Glascock MD, Braswell GE, Cobean RH (1998) In: Shackley MS (ed) Archaeological obsidian studies, vol 3. Plenum Press, New York, pp 15–65Google Scholar
  3. 3.
    Glascock MD, Neff H (2003) Meas Sci Technol 14:1516–1526CrossRefGoogle Scholar
  4. 4.
    Hughes RE, Smith RL (1993) In: Stein JK, Linse AR (eds) Effects of scale on archaeological and geoscientific perspectives. Geological Society of America, BoulderGoogle Scholar
  5. 5.
    Merrick HV, Brown FH (1984) Archaeometry 26:230–236CrossRefGoogle Scholar
  6. 6.
    Merrick HV, Brown FH (1984) The Afr Archaeol Rev 2:129–152CrossRefGoogle Scholar
  7. 7.
    Shackley MS (1998) Archaeological obsidian studies: method and theory. Plenum Press, New YorkGoogle Scholar
  8. 8.
    Taylor RE (1976) Advances in obsidian glass studies. Noyes Press, Park Ridge, New JerseyGoogle Scholar
  9. 9.
    Wilson L, Pollard AM (2001) In: Brothwell D, Pollard AM (eds) Handbook of archaeological science, Wiley, New York, pp 81–92Google Scholar
  10. 10.
    Shackley MS (2005) Obsidian: geology and archaeology in the North American Southwest. The University of Arizona Press, TucsonGoogle Scholar
  11. 11.
    Glascock MD (2006) Tables for neutron activation analysis. Univeristy of Missouri, ColumbiaGoogle Scholar
  12. 12.
    Jenkins R (1999) X-Ray fluorescence spectrometry. Wiley, New YorkGoogle Scholar
  13. 13.
    De Soete D, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley-Interscience, New YorkGoogle Scholar
  14. 14.
    Ehmann WD, Brückner U, McKown D (1980) J Radioanal Nucl Chem 57:491–502CrossRefGoogle Scholar
  15. 15.
    Ehmann WD, Vance DE (1991) Radiochemistry and nuclear methods of analysis. Wiley, New YorkGoogle Scholar
  16. 16.
    Baedecker P, Rowe J, Steinnes E (1977) J Radioanal Nucl Chem 40:115–146CrossRefGoogle Scholar
  17. 17.
    Parry SJ (1982) J Radioanal Nucl Chem 72:195–207CrossRefGoogle Scholar
  18. 18.
    Williams RE, Hopke PK, Meyer RA (1981) J Radioanal Nucl Chem 63:187–199CrossRefGoogle Scholar
  19. 19.
    Williams RE, Hopke PK, Meyer RA (1982) J Radioanal Nucl Chem 72:183–194CrossRefGoogle Scholar
  20. 20.
    Riggle K (1992) Ph.D. Thesis, Univeristy of MissouriGoogle Scholar
  21. 21.
    Bower NW, Gladney ES, Hagan RC, Trujillo PE, Warren RG (1985) Geostandards Newslett 9:199–203CrossRefGoogle Scholar
  22. 22.
    Tian WZ, Ehmann WD (1984) J Radioanal Nucl Chem 84:89–102CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • M. E. Coleman
    • 1
    • 2
  • M. D. Glascock
    • 1
  • J. D. Robertson
    • 1
    • 2
  1. 1.University of Missouri Research ReactorColumbiaUSA
  2. 2.Department of ChemistryUniversity of MissouriColumbiaUSA

Personalised recommendations