A detailed analysis of the properties of radiolyzed proteinaceous amino acids

  • Franco Cataldo
  • Pietro Ragni
  • Susana Iglesias-Groth
  • Arturo Manchado


The thermal behaviour of 21 proteinaceous l-amino acids either as pristine samples and also as radiolyzed (3.2 MGy) samples was studied with the differential scanning calorimeter. The onset and peak melting point as well as the melting enthalpy of all samples before and after the radiation treatment was measured and reported. The residual amount of each amino acid survived to the radiation dose of 3.2 MGy (N γ) was measured from the melting enthalpies before and after radiolysis and hence the radiation resistance of each amino acid has been determined. The radiolysis causes a systematic reduction of the melting enthalpy and a shift of the onset and peak melting point to lower values. It is shown that N γ does not correlate with the melting points of the amino acids but shows a correlation with the entity of the shift of the melting point peaks occurred after radiolysis. Such correlation instead does not exist between the N γ parameter and the onset melting points of the amino acids. An explanation of such lack of correlation was given. Furthermore, a general relationship has been found between the amino acids melting point peak measured on pristine samples and the melting point peaks after solid state radiolysis. Such relationship can be used to predict roughly the expected melting point after radiolysis at 3.2 MGy of any given amino acid. The last part of the study was dedicated in the attempt to find a correlation between the N γ parameter and the amount of the amino acids survived the radiolysis R γ as measured by spectropolarimetry (ORD spectroscopy). A general trend was found in the connection between the N γ and R γ parameters but not a very strong correlation.


Amino acids Radiolysis Calorimetry Melting point shift Optical activity 


  1. 1.
    Hayatsu R, Anders E (1981) Top Curr Chem 99:1Google Scholar
  2. 2.
    Meierhenrich UJ (2008) Amino acids and the asymmetry of life. Springer, BerlinGoogle Scholar
  3. 3.
    Cronin JR, Pizzarello S (1997) Science 275:951CrossRefGoogle Scholar
  4. 4.
    Cronin JR, Pizzarello S (2000) Chirality of meteoritic organic matter: a brief review (Chap. 2). In: Goodfriend GA, Collins MJ, Fogel ML, Macko SA, Wehmiller JF (eds) Perspective in amino acid and protein geochemistry. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Pizzarello S, Cronin JR (2000) Geochim Cosmochim Acta 64:329CrossRefGoogle Scholar
  6. 6.
    Pizzarello S, Huang Y, Alexandre MR (2008) Proc Natl Acad Sci 105:3700CrossRefGoogle Scholar
  7. 7.
    Kwok S (2009) Astrophys Space Sci 319:5CrossRefGoogle Scholar
  8. 8.
    Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Menard F, Tamura M (1998) Science 281:672CrossRefGoogle Scholar
  9. 9.
    Cataldo F, Angelini G, Iglesias-Groth S, Manchado A (2010) Radiat Phys Chem. (in press)Google Scholar
  10. 10.
    Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2010) J Radioanal Nucl Chem. (in press)Google Scholar
  11. 11.
    Iglesias-Groth S, Cataldo F, Ursini O, Manchado A (2010) Monthly Notice R Astron Soc (in press)Google Scholar
  12. 12.
    Urey HC (1955) Proc Natl Acad Sci USA 41:127CrossRefGoogle Scholar
  13. 13.
    Urey HC (1956) Proc Natl Acad Sci USA 42:889CrossRefGoogle Scholar
  14. 14.
    Draganic IG, Draganic ZD, Adloff JP (1993) Radiation and radioactivity on the earth and beyond. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    Cataldo F, Keheyan Y, Baccaro S (2004) J Radioanal Nucl Chem 262:423CrossRefGoogle Scholar
  16. 16.
    Cataldo F, Ragni P, Ursini O (2007) J Radioanal Nucl Chem 272:29CrossRefGoogle Scholar
  17. 17.
    Cataldo F (2007) J Radioanal Nucl Chem 272:107CrossRefGoogle Scholar
  18. 18.
    Cataldo F, Ursini O, Lilla E, Angelini G (2008) Radiat Phys Chem 77:561CrossRefGoogle Scholar
  19. 19.
    Cataldo F, Ursini O, Angelini G (2008) Radiat Phys Chem 77:941CrossRefGoogle Scholar
  20. 20.
    Commeyras A, Boiteau L, Vandenabele-Trambouze O, Selsis F (2006) Peptide emergence, evolution and selection on primitive earth (Chap. 4). In: Gargaud M, Barbier B, Martin H, Reisse J (eds) (2006) Lectures in astrobiology: study edition: Vol 1. Part 2: From prebiotic chemistry to the origin of life on earth. Springer, BerlinGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Franco Cataldo
    • 1
    • 2
  • Pietro Ragni
    • 3
  • Susana Iglesias-Groth
    • 4
  • Arturo Manchado
    • 4
    • 5
  1. 1.Istituto Nazionale di Astrofisica. Osservatorio Astrofisico di CataniaCataniaItaly
  2. 2.Lupi Chemical ResearchRomeItaly
  3. 3.Istituto di Metodologie Chimiche, CNRMonterotondo Stazione, RomeItaly
  4. 4.Instituto de Astrofísica de Canarias (IAC)La Laguna, TenerifeSpain
  5. 5.CSICMadridSpain

Personalised recommendations