Study of sorption processes of strontium on the synthetic hydroxyapatite

  • O. RosskopfováEmail author
  • M. Galamboš
  • P. Rajec


The sorption of strontium on synthetic hydroxyapatite was investigated using batch method and radiotracer technique. The hydroxyapatite samples were prepared by a wet precipitation process followed by calcination of calcium phosphate that precipitated from aqueous solution. Also, commercial hydroxyapatites were used. The sorption of strontium on hydroxyapatite depended on the method of preparation and it was pH independent ranging from 4 to 9 as a result of buffering properties of hydroxyapatite. The distribution coefficient K d was significantly decreased with increasing concentration of Sr2+ and Ca2+ ions in solution with concentration above 1 × 10−3 mol dm−3. The percentage strontium sorption for commercial and by wet method prepared hydroxyapatite was in the range of 83–96%, while calcined hydroxyapatite was ranging from 10 to 30%. The experimental data for sorption of strontium have been interpreted in the term of Langmuir isotherm. The sorption of Sr2+ ions was performed by ion-exchange with Ca2+ cations on the crystal surface of hydroxyapatite. Although calcined hydroxyapatite is successfully used as biomaterial for hard tissues repair, it is not used for the treatment of liquid wastes.


Sorption Hydroxyapatite Strontium Langmuir isotherm 


  1. 1.
    Narasaraju TSB, Phebe DE (1996) Some physico-chemical aspects of hydroxylapatite. J Mater Sci 31:1–21CrossRefGoogle Scholar
  2. 2.
    Saeri MR, Afshar A, Ghorbani M, Ehsani N, Sorell CC (2003) The wet precipitation process of hydroxyapatite. Mater Lett 57:4064–4069CrossRefGoogle Scholar
  3. 3.
    Liu C, Huang Y, Shen W, Cui J (2001) Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials 22:301–306CrossRefGoogle Scholar
  4. 4.
    Kothapalli C, Wei M, Vasiliev A, Shaw MT (2004) Influence of temperature and concentration on the sintering behaviour and mechanical properties of hydroxyapatite. Acta Mater 52:5655–5663CrossRefGoogle Scholar
  5. 5.
    Lazić S, Vuković Ž (1991) Ion exchange of strontium on synthetic hydroxyapatite. J Radioanal Nucl Chem 149(1):161–168CrossRefGoogle Scholar
  6. 6.
    Ashok M, Kalkura SN, Sundaram NM, Arivuoli D (2007) Growth and characterization of hydroxyapatite crystals by hydrothermal method. J Mater Sci Mater Med 18:895–898CrossRefGoogle Scholar
  7. 7.
    Wang A, Lu Y, Zhu R, Li S, Ma X (2009) Effect of process parameters on the performance of spray dried hydroxyapatite microspheres. Powder Technol 191:1–6CrossRefGoogle Scholar
  8. 8.
    Luo P, Nieh TG (1996) Preparing hydroxyapatite powders with controlled morphology. Biomaterials 17:1959–1964CrossRefGoogle Scholar
  9. 9.
    Sanosh KP, Chu M, Balakrishnan A, Lee Y, Kim TN, Cho S (2009) Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 9:1459–1462CrossRefGoogle Scholar
  10. 10.
    Nzihou A, Sharrock P (2010) Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites. Waste Biomass Valor 1:163–174CrossRefGoogle Scholar
  11. 11.
    Jeanjean J, Rouchaud JC, Tran M, Fedoroff M (1995) Sorption of uranium and other heavy metals on hydroxyapatite. J Radioanal Nucl Chem Lett 201(6):529–539CrossRefGoogle Scholar
  12. 12.
    Elouear Z, Bouzid J, Boujelben N, Feki M, Jamoussi F, Montiel A (2008) Heavy metal removal from aqueous solutions by activated phosphate rock. J Hazard Mater 156:412–420CrossRefGoogle Scholar
  13. 13.
    Fernane F, Mecherri MO, Sharrock P, Hadioui M, Lounici H, Fedoroff M (2008) Sorption of cadmium and copper ions on natural and synthetic hydroxylapatite particles. Mater Charact 59:554–559CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L (2010) Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ Pollut 158:514–519CrossRefGoogle Scholar
  15. 15.
    Krestou A, Xenidis A, Panias D (2004) Mechanism of aqueous uranium(VI) uptake by hydroxyapatite. Miner Eng 17:373–381CrossRefGoogle Scholar
  16. 16.
    Simon FG, Biermann V, Peplinski B (2008) Uranium removal from groundwater using hydroxyapatite. Appl Geochem 23:2137–2145CrossRefGoogle Scholar
  17. 17.
    Moore RC, Holt K, Zhao H, Hasan A, Awwad N (2003) Sorption of Np(V) by synthetic hydroxyapatite. Radiochim Acta 91(12):721–728CrossRefGoogle Scholar
  18. 18.
    Moore RC, Gasser M, Awwad N, Holt KC, Salas FM, Hasan A, Hasan MA, Zhao H, Sanchez CA (2005) Sorption of plutonium(VI) by hydroxyapatite. J Radioanal Nucl Ch 263(1):97–101CrossRefGoogle Scholar
  19. 19.
    Krejzler J, Narbutt J (2003) Adsorption of strontium, europium and americium(III) ions on novel adsorbent Apatite II. Nukleonika 48(4):171–175Google Scholar
  20. 20.
    Raičević S, Vuković Ž, Lizunova TL, Komarov VF (1996) The uptake of strontium by calcium phosphate phase formed at an elevated pH. J Radioanal Nucl Chem 204(2):363–370Google Scholar
  21. 21.
    Moore RC, Sanchez C, Holt K, Zhang PC, Xu HF, Chopin GR (2004) Formation of hydroxyapatite in soils using calcium citrate and sodium phosphate for control of strontium migration. Radiochim Acta 92(9–11):719–723CrossRefGoogle Scholar
  22. 22.
    Nielsen SP (2004) The biological role of strontium. Bone 35:583–588CrossRefGoogle Scholar
  23. 23.
    Höllriegel V, Li WB, Oeh U (2006) Human biokinetics of strontium-part II: final data evaluation of intestinal absorption and urinary excretion of strontium in human subjects after stable tracer administration. Radiat Environ Biophys 45:179–185CrossRefGoogle Scholar
  24. 24.
    Tiselius A, Hjertén S, Levin Ö (1956) Protein chromatography on calcium phosphate columns. Arch Biochem Biophys 65:132–155CrossRefGoogle Scholar
  25. 25.
    Krištín J, Gábor T (1984) Keramická hmota na báze hydroxilapatitu a oxihydroxilapatitu pre implantáty s prirodzenou fixáciou. Patent CS8300114 (A1)Google Scholar
  26. 26.
    Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894CrossRefGoogle Scholar
  27. 27.
    Bengston Ǻ, Shuchukarev A, Persson P, Sjöberg S (2009) A solubility and surface complexation study of a non-stoichiometric hydroxyapatite. Geochim Cosmochim Acta 73:257–267CrossRefGoogle Scholar
  28. 28.
    Smičiklas I, Dimović S, Plećaš I, Mitrić M (2006) Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res 40:2267–2274CrossRefGoogle Scholar
  29. 29.
    Vučinić DR, Radulović DS, Deušić SD (2010) Electrokinetic properties of hydroxyapatite under flotation conditions. J Colloid Interface Sci 343:239–245CrossRefGoogle Scholar
  30. 30.
    Smičiklas ID, Milonjić SK, Pfendt P, Raičević S (2000) The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep Purif Technol 18:185–194CrossRefGoogle Scholar
  31. 31.
    Dimović S, Smičiklas I, Plećaš I, Antonović D, Mitrić M (2009) Comparative study of differently treated animal bones for Co2+ removal. J Hazard Mater 164:279–287CrossRefGoogle Scholar
  32. 32.
    Stötzel C, Müller FA, Reinert F, Niederdraenk F, Barralet JE, Gbureck U (2009) Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloid Surf B 74:91–95CrossRefGoogle Scholar
  33. 33.
    Bailliez S, Nzihou A (2004) The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent. Chem Eng J 98:141–152CrossRefGoogle Scholar
  34. 34.
    Somasundaran P, Amankonah JO, Ananthapadmabhan KP (1985) Mineral-solution equilibria in sparingly soluble mineral systems. Colloids Surf 15:309–333CrossRefGoogle Scholar
  35. 35.
    Parkman RH, Charnock JM, Livens FR, Vaughan DJ (1998) A study of the interaction of strontium ions in aqueous solution with the surfaces of calcite and kaolinite. Geochim Cosmochim Acta 62:1481–1492CrossRefGoogle Scholar
  36. 36.
    Raynaud S, Champion E, Bernache-Assolant D, Tetard D (1998) Dynamic fatigue and degradation in solution of hydroxyapatite ceramics. J Mater Sci Mater Med 9:221–227CrossRefGoogle Scholar
  37. 37.
    Smičiklas I, Dimović S, Šljivić M, Plećaš I, Lončar B, Mitrić M (2010) Resource recovery of animal bones: study on sorptive properties and mechanism for Sr2+ ions. J Nucl Mater 400:15–24CrossRefGoogle Scholar
  38. 38.
    Rajec P, Macášek F, Féder M, Misaelides P, Šamajová E (1998) Sorption of caesium and strontium on clinoptilolite- and mordenite-containing sedimentary rocks. J Radioanal Nucl Chem 229:49–55CrossRefGoogle Scholar
  39. 39.
    Khan SA, Rehman RU, Khan MA (1995) Sorption of strontium on bentonite. Waste Manag 15:641–650CrossRefGoogle Scholar
  40. 40.
    Galamboš M, Kufčáková J, Rajec P (2009) Sorption of strontium on Slovak bentonites. J Radioanal Nucl Chem 281:347–357CrossRefGoogle Scholar
  41. 41.
    Galamboš M, Kufčáková J, Rosskopfová O, Rajec P (2010) Adsorption of cesium and strontium on natrified bentonites. J Radioanal Nucl Chem 283:803–813CrossRefGoogle Scholar
  42. 42.
    Tsai SC, Juang KW (2000) Comparison of linear and nonlinear forms of isotherm models for strontium on a sodium bentonite. J Radioanal Nucl Chem 243:741–746CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Faculty of Natural Sciences, Department of Nuclear ChemistryComenius University in BratislavaBratislavaSlovak Republic

Personalised recommendations