Anthropogenic source assessment of 226Ra and 210Pb in a sediment core from the Cubatão River estuary (SE Brazil)

  • L. M. Sanders
  • C. J. Sanders
  • W. Luiz-Silva
  • W. Machado
  • E. V. Silva-Filho
  • S. R. Patchineelam


A sediment core from an estuarine area receiving drainage from the highly industrialized Cubatão River basin (SE Brazil) showed 226Ra and 210Pb activities up to 80 and 213 Bq kg−1, respectively, which are greater than activities considered as regional background levels. Radionuclides and the elevated phosphorus concentrations (up to 0.3% sediment dry weight) found along the sediment core were significantly correlated with each other, indicating source similarity. These results indicate that 226Ra and 210Pb activities are affected by fertilizer industry-derived inputs in addition to natural sources. This interpretation was supported by 210Pb/226Ra ratios (found to be between 2.6 and 3.9) that indicate disequilibrium between 226Ra and its decay product 210Pb, as expected for phosphogypsum-affected sediments.


Estuarine sediments Radiochemical contamination 210Pb 226Ra 


  1. 1.
    Silva PSC, Mazzilli BP, Fávaro DIT (2006) J Radioanal Nucl Chem 269(3):739–745CrossRefGoogle Scholar
  2. 2.
    San Miguel EG, Bolívar JP, García-Tenorio R (2004) Sci Total Environ 318:143–157CrossRefGoogle Scholar
  3. 3.
    Braga ES, Bonetti CVDH, Burone L, Bonetti J (2000) Mar Pollut Bull 40:165–173CrossRefGoogle Scholar
  4. 4.
    Luiz-Silva W, Machado W, Matos RHR (2008) J Braz Chem Soc 19(8):1490–1500CrossRefGoogle Scholar
  5. 5.
    Machado W, Luiz-Silva W, Sanders CJ, Patchineelam SR (2008) J Environ Radioact 99:1329–1334CrossRefGoogle Scholar
  6. 6.
    Moore WS (1984) Nucl Instrum Methods 223:407–411CrossRefGoogle Scholar
  7. 7.
    Cutshall NH, Larsen IL, Olsen CR (1982) Nucl Instrum Methods 206:309–312Google Scholar
  8. 8.
    Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Mar Environ Res 52:51–79CrossRefGoogle Scholar
  9. 9.
    Borges AC, Sanders CJ, Santos HL, Araripe DR, Machado W, Patchineelam SR (2009) Mar Pollut Bull 58:1750–1754CrossRefGoogle Scholar
  10. 10.
    Saito RT, Figueira RCL, Tessler MG, Cunha IIL (2001) J Radioanal Nucl Chem 249(1):251–257CrossRefGoogle Scholar
  11. 11.
    Wilken RD, Moreira I, Rebello A (1986) Sci Total Environ 58:195–198CrossRefGoogle Scholar
  12. 12.
    Vegueria SFJ, Godoy JM, Miekeley N (2002) J Environ Radioact 62:29–38CrossRefGoogle Scholar
  13. 13.
    Sanders CJ, Santos IR, Silva-Filho EV, Patchineelam SR (2006) Mar Pollut Bull 52(9):1085–1089CrossRefGoogle Scholar
  14. 14.
    Sanders CJ, Smoak JM, Naidu AS, Patchineelam SR (2008) J Coastal Res 24(2):533–536CrossRefGoogle Scholar
  15. 15.
    Sanders CJ, Smoak JM, Naidu AS, Araripe DR, Sanders LM, Patchineelam SR (2010) Environ Earth Sci 60:1291–1301CrossRefGoogle Scholar
  16. 16.
    Mazzilli B, Palmiro V, Saueia C, Nisti MB (2000) J Environ Radioact 49:113–122CrossRefGoogle Scholar
  17. 17.
    Santos AJG, Mazzilli BP, Fávaro DIT, Silva PSC (2006) J Environ Radioact 87:52–61CrossRefGoogle Scholar
  18. 18.
    Saueia CHR, Mazzilli BP (2006) J Environ Radioact 89:229–239CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • L. M. Sanders
    • 1
  • C. J. Sanders
    • 3
  • W. Luiz-Silva
    • 2
  • W. Machado
    • 3
  • E. V. Silva-Filho
    • 3
  • S. R. Patchineelam
    • 3
  1. 1.Instituto de Radioproteção e Dosimetria (IRD)Rio de JaneiroBrazil
  2. 2.Instituto de Geociências, Universidade Estadual de CampinasCampinasBrazil
  3. 3.Departamento de GeoquímicaInstituto de Química, Universidade Federal FluminenseNiteróiBrazil

Personalised recommendations